Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia

1University of Illinois.
AJP Heart and Circulatory Physiology (Impact Factor: 3.84). 02/2013; 304(8). DOI: 10.1152/ajpheart.00514.2012
Source: PubMed


Vascular endothelial factor receptor (VEGFR) cell surface localization plays a critical role in transducing VEGF signaling towards angiogenic outcomes and quantitative characterization of these parameters is critical to advancing computational models for predictive medicine. However data to this point has largely examined intact muscle, thus essential data on the cellular localization of the receptors within the tissue are currently unknown. Therefore, our aims are to quantitatively analyze VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles following the induction of hindlimb ischemia, an established model for human peripheral artery disease. Flow cytometry is used to measure and compare the ex vivo surface localization of VEGFR1 and VEGFR2 on CD31(+)/CD34(+) endothelial cells, 3 and 10 days after unilateral ligation of the femoral artery. We determine that 3 days after hindlimb ischemia VEGFR2 surface-levels are decreased by 80% compared to endothelial cells from the non-ischemic limb, and 10 days after ischemia, we observe a 2-fold increase in the surface-levels of the modulatory receptor, VEGFR1, along with increased PCNA, uPA, and uPAR mRNA expression, compared to the non-ischemic limb. The significant upregulation of VEGFR1 surface-levels indicates that VEGFR1 indeed plays a critical role in the ischemia-induced perfusion-recovery process, a process that includes both angiogenesis and arteriogenesis. The quantification of these dissimilarities for the first time, ex vivo, provides insight into the balance of modulatory (VEGFR1) and pro-angiogenic (VEGFR2) receptors in ischemia and lays a foundation for systems biology approaches towards therapeutic angiogenesis.

Download full-text


Available from: Aleksander S Popel
  • Source
    • "Several researchers believe that endothelial progenitor cells included in BMCs differentiated into endothelial cells and, after transplantation in the injury region, contributes to cell survival and angiogenesis[17,18]. Autologous BMCs and PRP are a rich source of growth factors that stimulates angiogenesis in ischemic muscle[19]. Moreover, angiogenic factors, including VEGF and epithelial growth factor (EGF), are also released from injured tissue recruiting BMCs to replace injured tissue[20,21].Previous studies similarly demonstrated that there is an additional contribution derived from BMCs or PRP progenitors which are mobilized in the setting of limb or myocardial ischemia, migrate to ischemic tissue, and are actively incorporate into new vessels[22]. "

    Full-text · Article · Jan 2015 · Journal of Clinical and Experimental Cardiology
  • Source
    • "Previous studies have been effective at measuring the numbers of VEGFRs in vitro29 and in vivo.30,31 Although the changes in VEGFRs have been investigated under ischemia,32 to our knowledge, the changes in surface receptors after antiangiogenic treatment have not been studied. Therefore, we investigate the changes in the number of VEGFR2 molecules on the endothelial cell surface after antiangiogenic treatment to better understand the cellular response to treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis, the formation of new blood vessels, is an essential step for cancer progression, but antiangiogenic therapies have shown limited success. Therefore, a better understanding of the effects of antiangiogenic treatments on endothelial cells is necessary. In this study, we evaluate the changes in cell surface vascular endothelial growth factor receptor (VEGFR) expression on endothelial cells in culture treated with the antiangiogenic tyrosine kinase inhibitor drug sunitinib, using quantitative flow cytometry. We find that proangiogenic VEGFR2 cell surface receptor numbers are increased with sunitinib treatment. This proangiogenic effect might account for the limited effects of sunitinib as a cancer therapy. We also find that this increase is inhibited by brefeldin A, an inhibitor of protein transport from the endoplasmic reticulum to the Golgi apparatus. The complex dynamics of cell surface VEGFRs may be important for successful treatment of cancer with antiangiogenic therapeutics.
    Full-text · Article · Sep 2014 · OncoTargets and Therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.
    Full-text · Article · Apr 2013 · International journal of immunopathology and pharmacology
Show more