Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia

1 Behavioural Neurology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
Brain (Impact Factor: 9.2). 01/2013; 136(2). DOI: 10.1093/brain/aws324
Source: PubMed


Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A-D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.

Download full-text


Available from: Melissa Erin Murray
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) is a heterogeneous group including both sporadic and familial diseases, characterized by a macroscopic alteration. It may correspond to various cognitive syndromes: behavioral variant of frontotemporal dementia (bvFTD), progressive nonfluent aphasia, and semantic dementia. The neuropathologic classification is now based on identification of the protein that accumulates in neurons and glia: Tau, TAR DNA Binding Protein 43 (TDP-43), and FUsed in Sarcoma (FUS). The disorders in which the corresponding proteins accumulate have been named FTLD-Tau, FTLD-TDP, and FTLD-FUS. FTLD-Tau includes sporadic cases (e.g. Pick's disease) and Tau mutations. FTLD-TDP are subdivided within four types (A, B, C, D) according to the shape and distribution of TDP-43 positive lesions within the associative frontal cortex. The FTLD-FUS group includes atypical FTLD with ubiquitinated lesions (FTLD-U), Neuronal Intermediate Filament Inclusion Disease (NIFID) and Basophilic Inclusion Body Disease (BIBD).
    No preview · Article · Sep 2013 · Revue Neurologique
  • [Show abstract] [Hide abstract]
    ABSTRACT: An abnormal expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72) is the most common genetic abnormality in familial and sporadic FTLD and ALS and the cause in most families where both, FTLD and ALS, are inherited. Pathologically, C9ORF72 expansion cases show a combination of FTLD-TDP and classical ALS with abnormal accumulation of TDP-43 into neuronal and oligodendroglial inclusions consistently seen in the frontal and temporal cortex, hippocampus and pyramidal motor system. In addition, a highly specific feature in C9ORF72 expansion cases is the presence of ubiquitin and p62 positive, but TDP-43 negative neuronal cytoplasmic and intranuclear inclusions. These TDP-43 negative inclusions contain dipeptide-repeat (DPR) proteins generated by unconventional repeat-associated translation of C9ORF72 transcripts with the expanded repeats and are most abundant in the cerebellum, hippocampus and all neocortex regions. Another consistent pathological feature associated with the production of C9ORF72 transcripts with expanded repeats is the formation of nuclear RNA foci that are frequently observed in the frontal cortex, hippocampus and cerebellum. Here, we summarize the complexity and heterogeneity of the neuropathology associated with the C9ORF72 expansion. We discuss implications of the data to the current classification of FTLD and critically review current insights from clinico-pathological correlative studies regarding the fundamental questions as to what processes are required and sufficient to trigger neurodegeneration in C9ORF72 disease pathogenesis.
    No preview · Article · Dec 2013 · Acta Neuropathologica
  • [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE TAR DNA-binding protein of 43 kDa (TDP-43) plays a major role in the pathogenesis of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Although a pathological continuity between FTLD and ALS has been suggested, the neuropathological changes of the lower motor neuron (LMN) systems have not been assessed in TDP-43-associated FTLD (FTLD-TDP), to our knowledge. OBJECTIVE To investigate a pathological continuity between FTLD-TDP and ALS by comparing their respective neuropathological changes in the motor neuron system. DESIGN AND SETTING A retrospective clinical medical record review and a semiquantitative neuropathological evaluation of the cranial motor nerve nuclei and spinal cord were conducted at autopsy. We included 43 patients with sporadic FTLD-TDP, type A, B, or C, from 269 consecutively autopsied patients with TDP-43 proteinopathy. Patients were categorized as having FTLD without ALS, FTLD-ALS (onset of FTLD symptoms/signs preceded those of ALS), or ALS-FTLD (onset of ALS symptoms/signs preceded those of FTLD). MAIN OUTCOMES AND MEASURES Neuronal TDP-43 pathological changes and neuronal loss. RESULTS Forty-three patients were included in the clinical analysis, and 29 from whom spinal cords were obtained were included in the neuropathological analysis. Survival time was significantly shorter in the FTLD-ALS and ALS-FTLD groups than in the FTLD without ALS group (P < .001). At neuropathological examination, 89% of patients in the FTLD without ALS group showed aggregations of TDP-43 in the spinal motor neurons. The LMN loss was most severe in ALS-FTLD, followed by FTLD-ALS and FTLD without ALS. All the patients with type A or C FTLD-TDP were included in the FTLD without ALS group, and all those with type B pathological changes were in the FTLD-ALS or the ALS-FTLD group. Lower motor neuron loss and TDP-43-positive skeinlike inclusions were observed in all pathological subtypes. CONCLUSIONS AND RELEVANCE The LMN systems of FTLD-TDP frequently exhibit neuropathological changes corresponding to ALS. Thus, a pathological continuity between FTLD-TDP and ALS is supported at the level of the LMN system.
    No preview · Article · Dec 2013
Show more