The Kallikrein-Kinin-System in Experimental Chagas Disease: A Paradigm to Investigate the Impact of Inflammatory Edema on GPCR-mediated pathways of Host Cell Invasion by Trypanosoma cruzi

Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil.
Frontiers in Immunology 01/2012; 3(396):396. DOI: 10.3389/fimmu.2012.00396
Source: PubMed


Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the Kallikrein-Kinin System (KKS). Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a TLR2 ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the shingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NFB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR and other GPCR partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodelling.

Download full-text


Available from: Julio Scharfstein
  • Source
    • "During the last decade, research conducted in our laboratory showed that kinins proteolytically released in peripheral sites of T. cruzi or Leishmania chagasi infection reversibly couple inflammation to antiparasite immunity [13–17]. Another interesting twist came from studies showing that activation of the contact system/KKS promotes bacterial entrapment within fibrin meshes, thus providing a physical barrier against the systemic spread of microbial pathogens [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.
    Full-text · Article · Sep 2014 · Mediators of Inflammation
  • Source
    • "The role of CXC chemokines in proinflammatory phenotype, developed by T. cruzi infection, was shown by experiments, in which tissue culture trypomastigotes activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen, in parasite infected tissues [81, 82]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi infection was studied in mouse lines selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory reaction and for high (HIII) or low (LIII) antibody (Ab) responses to complex antigens. Resistance was associated with gender (females) and strain-the high responder lines AIRmax and HIII were resistant. The higher resistance of HIII as compared to LIII mice extended to higher infective doses and was correlated with enhanced production of IFN-γ and nitric oxide production by peritoneal and lymph node cells, in HIII males and females. We also analyzed the involvement of previously mapped Ab and T. cruzi response QTL with the survival of Selection III mice to T. cruzi infections in a segregating backcross [F1(HIII×LIII) ×LIII] population. An Ab production QTL marker mapping to mouse chromosome 1 (34.8 cM) significantly cosegregated with survival after acute T. cruzi infections, indicating that this region also harbors genes whose alleles modulate resistance to acute T. cruzi infection.
    Full-text · Article · Aug 2014 · Mediators of Inflammation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. Areas covered: The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. Expert opinion: For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
    Full-text · Article · Aug 2013 · Expert Opinion on Therapeutic Targets
Show more