Pyocyanin-Enhanced Neutrophil Extracellular Trap Formation Requires the NADPH Oxidase

University of Alabama-Birmingham, United States of America
PLoS ONE (Impact Factor: 3.23). 01/2013; 8(1):e54205. DOI: 10.1371/journal.pone.0054205
Source: PubMed


Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.

  • Source
    • "scavenging H 2 O 2 [50] [51], resulting in a worsening of the killing defect of the CGD phagocytes. NETs, a phenomenon of chromatin decondensation that trap and kill bacteria, are also ROS dependent and involved in P. aeruginosa clearance [52]. If ROS are deficient (scavenged by kynurenine), the NETs could not be generated to trap P. aeruginosa efficiently. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine's scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.
    Full-text · Article · Jun 2014 · Free Radical Biology and Medicine
  • Source
    • "NETosis represents a new paradigm of cell death that is distinct from apoptosis and necrosis in many aspects. No nuclear fragmentation or membrane blebbing is observed, and activation is independent of caspase activity, although NADPH oxidase is required [10]. NETosis also involves activities of NE and myeloperoxidase [11], histone citrullination by peptidylarginine deiminase 4 [12] and activation of the Raf-MEK-ERK pathway [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophil extracellular traps (NETs) consist of antimicrobial molecules embedded in a web of extracellular DNA. Formation of NETs is considered to be a defense mechanism utilized by neutrophils to ensnare and kill invading pathogens, and has been recently termed NETosis. Neutrophils can be stimulated to undergo NETosis ex vivo, and are predicted to contain high levels of serine proteases, such as neutrophil elastase (NE), cathepsin G (CG) and proteinase 3 (PR3). Serine proteases are important effectors of neutrophil-mediated immunity, which function directly by degrading pathogenic virulent factors and indirectly via proteolytic activation or deactivation of cytokines, chemokines and receptors. In this study, we utilized a diverse and unbiased peptide library to detect and profile protease activity associated with NETs induced by phorbol-12-myristate-13-acetate (PMA). We obtained a "proteolytic signature" from NETs derived from healthy donor neutrophils and used proteomics to assist in the identification of the source of this proteolytic activity. In addition, we profiled each neutrophil serine protease and included the newly identified enzyme, neutrophil serine protease 4 (NSP4). Each enzyme had overlapping yet distinct endopeptidase activities and often cleaved at unique sites within the same peptide substrate. The dominant proteolytic activity in NETs was attributed to NE; however, cleavage sites corresponding to CG and PR3 activity were evident. When NE was immunodepleted, the remaining activity was attributed to CG and to a lesser extent PR3 and NSP4. Our results suggest that blocking NE activity would abrogate the major protease activity associated with NETs. In addition, the newly identified substrate specificity signatures will guide the design of more specific probes and inhibitors that target NET-associated proteases.
    Full-text · Article · Sep 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudogout is an autoinflammatory condition triggered by calcium pyrophosphate dehydrate (CPPD) crystal deposition in the joints. The innate immune system is irritated by and responds to the presence of the crystals with an inflammatory response. The synovial fluid contains activated inflammatory macrophages and neutrophil granulocytes. Several details of crystal-induced macrophage activation were recently uncovered, but very little is known about interactions of CPPD crystals with neutrophils. In this study, we show that human neutrophils engulf CPPD crystals and form large amounts of neutrophil extracellular traps (NETs) in vitro. Released extracellular DNA binds myeloperoxidase and citrullinated histone H4. CPPD crystal-stimulated neutrophils and their nuclear DNA undergo morphological changes characteristic for NET formation. The ERK/MEK signaling pathway, heat shock protein 90, PI3K, and an intact cytoskeleton are required for CPPD-induced NET formation. Blocking crystal-activated respiratory burst has, however, no effect on NETs. Human neutrophils release IL-1β and IL-8 in response to CPPD crystals, and blocking CXCR2, the main IL-8R, diminishes NET formation. Proinflammatory cytokines, TNF-α, GM-CSF, and IL-1β, increase NET release by the crystals. Enhanced bacterial killing by CPPD-induced NETs demonstrates their ability to cause cellular damage. Our work documents and provides details about extracellular trap release in human neutrophils activated by CPPD microcrystals. We suggest that crystal-triggered NET formation can be a novel contributor to inflammatory conditions observed in CPPD crystal-driven synovitis.
    No preview · Article · May 2013 · The Journal of Immunology
Show more