The paper presents a class of approximation algorithms that extend the idea of bounded inference, inspired by successful constraint propagation algorithms, to probabilistic inference and combinatorial optimization. The idea is to bound the dimensionality of dependencies created by inference algorithms. This yields a parameterized scheme, called mini-buckets, that offers adjustable levels of
... [Show full abstract] accuracy and efficiency. The mini-bucket approach generates both an approximate solution and a bound on the solution quality. We present empirical results demonstrating successful performance of the proposed approximation scheme for probabilistic tasks, both on randomly generated problems and on realistic domains such as medical diagnosis and probabilistic decoding. 1 Introduction Automated reasoning tasks such as constraint satisfaction and optimization, probabilistic inference, decision-making, and planning are generally hard (NP-hard). One way to cope This work was partially supported...