Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells

Department of Internal Medicine, Charles Drew University of Medicine & Science, Los Angeles, California 90059, USA.
Journal of Endocrinology (Impact Factor: 3.72). 12/2008; 200(2):207-21. DOI: 10.1677/JOE-08-0241
Source: PubMed


Hypovitaminosis D is an important public health problem. Serum 25-hydroxyvitamin D (25-OHD) is now recognized as an independent predictor for cardiovascular and related diseases (CVD) as well as other chronic medical conditions. However, the biologic pathways through which these effects are mediated remain poorly understood. We hypothesized that exposing mesenchymal multipotent cells (MMCs) to the active form of vitamin D would increase the expression of selected antifibrotic factors that in turn would ameliorate the progression of chronic diseases. MMCs were primed with 5'-azacytidine to induce a fibrotic phenotype and then treated with active vitamin D (1,25D) or ethanol <0.1% as vehicle in a time course manner (30 min, 1, 5, and 24 h, and for 4 and 7 days). The addition of 1,25D to MMCs promotes: a) increased expression and nuclear translocation of the vitamin D receptor; b) decreased expression of TGFB1 and plasminogen activator inhibitor (SERPINE1), two well-known profibrotic factors; c) decreased expression of collagen I, III and other collagens isoforms; and d) increased expression of several antifibrotic factors such as BMP7 a TGFB1 antagonist, MMP8 a collagen breakdown inducer and follistatin, an inhibitor of the profibrotic factor myostatin. In conclusion, the addition of 1,25D to differentiated MMCs displays a decreased profibrotic signaling pathway and gene expression, leading to decrease in collagen deposition. This study highlights key mechanistic pathways through which vitamin D decreases fibrosis, and provides a rationale for studies to test vitamin D supplementation as a preventive and/or early treatment strategy for CVD and related fibrotic disorders.

Download full-text


Available from: Keith C Norris, Jan 13, 2014
  • Source
    • "Interestingly, low vitamin D levels have been related to poor liver function and stage of cirrhosis[10,13]. Vitamin D was shown to reduce the expression of collagen and profibrotic factors leading to decreased fibrosis[14]. The effect of Vit. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. To assess zinc (Zn) and Vitamin D (Vit. D) status in chronic Hepatitis C virus- (HCV) infected patients and their relationship to interleukin- (IL-) 17 and disease severity and then investigate whether Zn and Vit. D3 modulate IL-17 expression in chronic HCV patients. Methods. Seventy patients and fifty healthy subjects were investigated. Serum levels of Zn, Vit. D, and IL-17 were assessed in the patients group and subgroups. Patients lymphocytes were activated in vitro in the presence or absence of Zn or Vit. D3 and then intracellular IL-17 production was assessed using flow cytometry. Results. Zn and Vit. D were significantly decreased in HCV patients. Increasing disease severity leads to more reduction in Zn level opposed by increasing IL-17 level. Zn potently reduced IL-17 production in a dose-related fashion; however it did not exert any toxic effects. Although Vit. D apparently increases IL17 expression, it is unclear whether it is due to its toxic effect on cell count or lack of definite association between Vit. D and both IL-17 and disease severity. Conclusions. This study demonstrates that Zn modulates IL-17 expression and provides a rationale for evaluating this compound as a supplementary agent in the treatment of chronic HCV.
    Full-text · Article · Oct 2015 · Journal of Immunology Research
  • Source
    • "Various mechanisms have been proposed to explain the role of VDR signaling in fibrosis regulation, but it is still poorly understood. The activation of this pathway has been shown to inhibit myofibroblast activation [25], to induce differentiation of mesenchymal precursors into a non-fibrogenic phenotype [26] and to reduce inflammation through NF-κB sequestration [16]. These mechanisms are not mutually exclusive and might work together. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice.
    Full-text · Article · Oct 2014 · PLoS ONE
  • Source
    • "Vitamin D and liver fibrosis 1a,25(OH) 2 D has anti-fibrotic effects in lung fibroblasts and mesenchymal multipotent cells in vitro [60] [61], as well as antiproliferative and anti-fibrotic effects in both in vitro and in vivo rat models of liver fibrosis. VDR is expressed by hepatic stellate cells (HSC) and this expression is upregulated by 1a,25(OH) 2 D. In addition, 1a,25(OH) 2 D suppresses HSC proliferation, and expression of cyclin D1, tissue inhibitor of metalloproteinase 1 and collagen Ia1 in vitro. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D is synthesized predominantly in the liver and functions as an important secosteroid hormone with pleiotropic effects. While its key regulatory role in calcium and bone homeostasis is well established, recently there is increasing recognition that vitamin D also regulates cell proliferation and differentiation, and has immunomodulatory, anti-inflammatory and anti-fibrotic properties. These non-skeletal effects are relevant in the pathogenesis and treatment of many causes of chronic liver disease. Vitamin D deficiency is frequently present in chronic liver disease and may predict non-response to antiviral therapy in chronic hepatitis C. Small studies suggest that vitamin D supplementation improves sustained viral response rates, while 1α-hydroxylase polymorphisms and vitamin D-binding protein are also implicated in therapeutic outcomes. Vitamin D deficiency also closely relates to the severity of non-alcoholic fatty liver disease (NAFLD) and is implicated in the pathogenesis of insulin resistance, a key factor in the development of NAFLD. In preclinical studies, phototherapy and vitamin D supplementation ameliorate NAFLD histopathology, while vitamin D is a powerful anti-fibrotic against thioacetamide liver injury. In liver transplant recipients severe vitamin D deficiency predicts, and vitamin D supplementation prevents, acute cellular rejection. The role of vitamin D in the activation and regulation of both innate and adaptive immune systems may explain its importance in the above liver diseases. Further prospective studies are therefore warranted to investigate the therapeutic impact of vitamin D supplementation in chronic liver disease.
    Full-text · Article · May 2012 · Journal of Hepatology
Show more