Optical imaging of the breast

Department of Radiology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.
Cancer Imaging (Impact Factor: 2.07). 02/2008; 8(1):206-15. DOI: 10.1102/1470-7330.2008.0032
Source: PubMed


This review provides a summary of the current state of optical breast imaging and describes its potential future clinical applications in breast cancer imaging. Optical breast imaging is a novel imaging technique that uses near-infrared light to assess the optical properties of breast tissue. In optical breast imaging, two techniques can be distinguished, i.e. optical imaging without contrast agent, which only makes use of intrinsic tissue contrast, and optical imaging with a contrast agent, which uses exogenous fluorescent probes. In this review the basic concepts of optical breast imaging are described, clinical studies on optical imaging without contrast agent are summarized, an outline of preclinical animal studies on optical breast imaging with contrast agents is provided, and, finally, potential applications of optical breast imaging in clinical practice are addressed. Based on the present literature, diagnostic performance of optical breast imaging without contrast agent is expected to be insufficient for clinical application. Development of contrast agents that target specific molecular changes associated with breast cancer formation is the opportunity for clinical success of optical breast imaging.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular imaging of breast cancer can potentially be used for breast cancer screening, staging, restaging, response evaluation and guiding therapies. Techniques for molecular breast cancer imaging include magnetic resonance imaging (MRI), optical imaging, and radionuclide imaging with positron emission tomography (PET) or single photon emission computed tomography (SPECT). This review focuses on PET and SPECT imaging which can provide sensitive serial non invasive information of tumor characteristics. Most clinical data are gathered on the visualization of general processes such as glucose metabolism with the PET-tracer [(18)F]fluorodeoxyglucose (FDG) and DNA synthesis with [18F]fluoro-L-thymidine (FLT). Increasingly more breast cancer specific targets are imaged such as the estrogen receptor (ER), growth factors and growth factor receptors. Imaging of the ER with the PET tracer 16-alpha-[(18)F]fluoro-17-beta-estradiol (FES) has shown a good correlation between FES tumor uptake and ER density. (111)In-trastuzumab SPECT to image the human epidermal growth factor receptor 2 (HER2) showed that in most patients with metastatic HER2 overexpressing disease more lesions were detected than with conventional staging procedures. The PET tracer (89)Zr-trastuzumab showed excellent, quantifiable, and specific tumor uptake. (111)In-bevacizumab for SPECT and (89)Zr-bevacizumab for PET-imaging have been developed for vascular endothelial growth factor (VEGF) imaging as an angiogenic marker. Lastly, tracers for the receptors EGFR, IGF-1R, PDGF-betaR and the ligand TGFbeta are under development. Although molecular imaging of breast cancer is still not commonly used in daily clinical practice, its application portfolio is expanding rapidly.
    No preview · Article · Oct 2009 · Breast (Edinburgh, Scotland)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of human breast cancer cells in culture. The present study provides in vivo evidence for efficacy of BITC for prevention of mammary cancer in MMTV-neu mice. Administration of BITC at 1 and 3 mmol/kg diet for 25 weeks markedly suppressed the incidence and/or burden of mammary hyperplasia and carcinoma in female MMTV-neu mice without causing weight loss or affecting neu protein level. For example, cumulative incidence of hyperplasia/carcinoma was significantly lower in mice fed BITC-supplemented diets compared with control mice (P = 0.01 by Fisher's test). The BITC-mediated prevention of mammary carcinogenesis correlated with suppression of cell proliferation and increased apoptosis. The average number of Ki-67-positive cells in the carcinoma lesions of 3 mmol BITC group was lower by approximately 21% (P < 0.05) compared with tumors from control mice. Apoptotic bodies in the mammary tumor were higher by about 2- to 2.5-fold in the 1 and 3 mmol BITC treatment groups (P < 0.05) compared with control group. The BITC administration also resulted in overexpression of E-cadherin and infiltration of CD3(+) T-cells in the tumor. Although BITC treatment increased cytotoxicity of natural killer (NK) cells in vitro, dietary feeding of BITC failed to augment NK cell lytic activity in an ex vivo assay. The present study demonstrating efficacy of BITC against mammary cancer in an animal model provides impetus to determine its activity in a clinical setting.
    Preview · Article · Nov 2009 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present first-of-its-kind spatially resolved enhancement kinetics of optical and magnetic resonance (MR) agents obtained by a combined MR and Diffuse Optical Tomography (MR-DOT) animal imaging system. A unique MR compatible fiber optic interface allows co-registration of MR and DOT data in space and time. High temporal resolution of the hybrid system permits acquisition of data in dynamic mode. Rats bearing a R3230 AC breast cancer tumor model are used for in vivo studies. Thirty-two optical and thirty MR images are acquired during a single imaging session that lasts nearly ten minutes. Both optical, indocyanine green (ICG), and MR contrast agents, gadolinium-DTPA (Gd-DTPA), are injected simultaneously after the acquisition of several baseline frames. Contrast enhancement time curves obtained by MR and DOT systems both indicate higher average enhancement in tumor regions, up to ten-fold for MRI and 3-fold for DOT, compared to close by non-tumor regions. This feasibility study is the first step towards clinical translation of this hybrid imaging platform. The ultimate aim is to use the enhancement kinetics of the optical agent ICG, which binds to plasma proteins, as complementary information to the kinetics of the MR agent Gd-DTPA, a small molecular agent that does not bind to plasma proteins, to better differentiate benign and malignant lesions.
    No preview · Article · Feb 2010 · Technology in cancer research & treatment
Show more