Interleukin-10/Interleukin-5 Responses at Birth Predict Risk for Respiratory Infections in Children with Atopic Family History

Division of Cell Biology, Telethon Institute for Child Health Research, P.O. Box 855, West Perth, WA 6872, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 13). 12/2008; 179(3):205-11. DOI: 10.1164/rccm.200803-438OC
Source: PubMed


Respiratory infections in early life are associated with risk for wheezing bronchiolitis, especially in children at high risk of atopy. The underlying mechanisms are unknown, but are suspected to involve imbalance(s) in host defense responses against pathogens stemming from functional immaturity of the immune system in this age group.
To assess the contribution of eosinophil-trophic IL-5, and the potent antiinflammatory cytokine IL-10, to risk for infection in early life.
We prospectively monitored a cohort of 198 high-risk children to age 5 years, recording every acute respiratory infection episode and classifying them by severity. We measured cord blood T-cell capacity to produce IL-10 and IL-5, and related these functions to subsequent infection history. IL-10 and IL-5 were associated, respectively, with resistance versus susceptibility to infections. The greatest contrasting effects of these two cytokines were seen when they were considered in combination by generating IL-10/IL-5 response ratios for each subject. The low IL-10/high IL-5 T-cell response phenotype was strongly associated with susceptibility to all grades of acute respiratory infection, relative to the more resistant high IL-10/low IL-5 phenotype.
Excessive production of IL-5 by T cells at birth is associated with heightened risk for subsequent severe respiratory infections, and this risk is attenuated by concomitant IL-10 production. The underlying mechanisms may involve IL-10-mediated feedback inhibition of IL-5-dependent eosinophil-induced inflammation, which is a common feature of host antiviral responses in early life.

Download full-text


Available from: Guicheng Zhang
  • Source
    • "Immunological parameters, which have been implicated in this context include IFNγ response capacity (75–77), IL-12 production (78, 79), HLA-DR expression (80), and the numbers/functions of T-regulatory cells (81) and dendritic cells (DC) (82–84). Increased susceptibility to severe lower respiratory tract infections during infancy has likewise been linked with developmental deficiency in the circulating DC compartment (84), with decreased capacity for production of IFNγ (85) and/or IL-12 (86, 87), and also with an imbalance between production of pro-inflammatory and regulatory cytokines by circulating Th-cells (88). Moreover, young children at high-risk of atopic diseases additionally display attenuated responses to both DTaP (89) and pneumococcal polysaccharide vaccine (90). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a genetically complex, chronic lung disease defined clinically as episodic airflow limitation and breathlessness that is at least partially reversible, either spontaneously or in response to therapy. Whereas asthma was rare in the late 1800s and early 1900s, the marked increase in its incidence and prevalence since the 1960s points to substantial gene × environment interactions occurring over a period of years, but these interactions are very poorly understood (1-6). It is widely believed that the majority of asthma begins during childhood and manifests first as intermittent wheeze. However, wheeze is also very common in infancy and only a subset of wheezy children progress to persistent asthma for reasons that are largely obscure. Here, we review the current literature regarding causal pathways leading to early asthma development and chronicity. Given the complex interactions of many risk factors over time eventually leading to apparently multiple asthma phenotypes, we suggest that deeply phenotyped cohort studies combined with sophisticated network models will be required to derive the next generation of biological and clinical insights in asthma pathogenesis.
    Full-text · Article · Sep 2014 · Frontiers in Immunology
  • Source
    • "IL-10 is a pleiotropic cytokine with regulatory effects on Th1/Th2 balance [4, 5, 19]. The precise functional role of IL-10, however, has not been clarified. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of allergic phenotypes involves complex inter-relationships among several Th2 and Th1 cytokines as well as the regulator cytokine interleukin (IL)-10. These direct or indirect interrelationships may distort the true associations of cytokine responses with these phenotypes. In this study, we aimed to clarify the effects of the regulatory cytokine IL-10 and Th1 cytokine interferon-gamma (IFN-γ) on allergic phenotypes after adjusting for the correlations with Th2 cytokines. After adjusting for Th2 cytokines, IL-10 and IFN-γ were protective against atopy. Adjusted levels of IL-10 and IFN-γ stimulated with house-dust mite (HDM) were significantly lower in atopics than non-atopics, for IL-10 adjusting for IL-5 (P = 0.002), IL-13 (P = 0.012), IL-9 (P = 0.016), and IL-4 (P = 0.043), and for IFN-γ adjusting for IL-5 (P = 0.005), IL-13 (P = 0.005), and IL-9 (P = 0.037). IL-10 and IFN-γ levels stimulated with phytohaemagglutinin (PHA) and staphylococcal enterotoxin B (SEB) exhibited a similar pattern. The adjusted levels of IL-10 and IFN-γ stimulated with HDM, PHA or SEB were all significantly negatively correlated with total serum IgE, except for IFN-γ stimulated with SEB. Levels of Th2 cytokines distort the associations of IL-10 and IFN-γ with allergic phenotypes. Removing the covariance with Th2 cytokines, both IL-10 and IFN-γ were protective against atopy.
    Full-text · Article · Dec 2011
  • Source
    • "). Interestingly, cord blood IL-5 and IL-10 responses were shown to predict prevalence of these acute respiratory infections, suggesting a very early immunological contribution to development of clinical atopy (Zhang et al. 2009). In contrast to this adverse effect of viral infections, childhood helminth infections have been shown to be protective against allergy in many studies but these were primarily cross-sectional in design. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The shaping of a child's immune system starts in utero, with possible long-term consequences in later life. This review highlights the studies conducted on the development of the immune system in early childhood up to school-age, discussing the impact that environmental factors may have. Emphasis has been put on studies conducted in geographical regions where exposure to micro-organisms and parasites are particularly high, and the effect that maternal exposures to these may have on an infant's immune responses to third-party antigens. In this respect we discuss the effect on responses to vaccines, co-infections and on the development of allergic disorders. In addition, studies of the impact that such environmental factors may have on slightly older (school) children are highlighted emphasizing the need for large studies in low to middle income countries, that are sufficiently powered and have longitudinal follow-up components to understand the immunological footprint of a child and the consequences throughout life.
    Full-text · Article · Jul 2011 · Parasitology
Show more