Yeast Mating

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2008; 475:3-20. DOI: 10.1007/978-1-59745-250-2_1
Source: PubMed


Haploid yeast cells mate to form a zygote, whose progeny are diploid cells. A fundamentally sexual event, related to fertilization, yeast mating nevertheless exhibits cytological properties that appear similar to somatic cell fusion. A large collection of mutations that lead to defects in various stages of mating, including cell fusion, has allowed a detailed dissection of the overall pathway. Recent advances in imaging methods, together with powerful methods of genetic analysis, make yeast mating a superb platform for investigation of cell fusion. An understanding of yeast cell fusion will provide insight into fundamental mechanisms of cell signaling, cell polarization, and membrane fusion.

1 Follower
23 Reads
  • Source
    • "Cell fusion in budding yeast occurs during mating events between haploid cells (Marsh and Rose, 1997; Ydenberg and Rose, 2008). Yeast haploid cells of the a and α mating types each secrete pheromones sensed by a receptor expressed by the opposite cell type. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell fusion is the key event of fertilization that gives rise to the diploid zygote and is a nearly universal aspect of eukaryotic biology. In the yeast Saccharomyces cerevisiae, several mutants have been identified that are defective for cell fusion, and yet the molecular mechanism of this process remains obscure. One obstacle has been that genetic screens have mainly focused on mating-specific factors, whereas the process likely involves housekeeping proteins as well. Here we implicate Cdc42p, an essential protein with roles in multiple aspects of morphogenesis, as a core component of the yeast cell fusion pathway. We identify a point mutant in the Rho-insert domain of CDC42, called cdc42-138, which is specifically defective in cell fusion. The cell fusion defect is not a secondary consequence of ineffective signaling or polarization. Genetic and morphological data show that Cdc42p acts at a late stage in cell fusion in concert with a key cell fusion regulator, Fus2p, which contains a Dbl-homology domain. We find that Fus2p binds specifically with activated Cdc42p, and binding is blocked by the cdc42-138 mutation. Thus, in addition to signaling and morphogenetic roles in mating, Cdc42p plays a role late in cell fusion via activation of Fus2p.
    Full-text · Article · Feb 2012 · Molecular biology of the cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When yeast cells sense mating pheromone, they undergo a characteristic response involving changes in transcription, cell cycle arrest in early G1, and polarization along the pheromone gradient. Cells in G2/M respond to pheromone at the transcriptional level but do not polarize or mate until G1. Fus2p, a key regulator of cell fusion, localizes to the tip of the mating projection during pheromone-induced G1 arrest. Although Fus2p was expressed in G2/M cells after pheromone induction, it accumulated in the nucleus until after cell division. As cells arrested in G1, Fus2p was exported from the nucleus and localized to the nascent tip. Phosphorylation of Fus2p by Fus3p was required for Fus2p export; cyclin/Cdc28p-dependent inhibition of Fus3p during late G1 through S phase was sufficient to block exit. However, during G2/M, when Fus3p was activated by pheromone signaling, Cdc28p activity again blocked Fus2p export. Our results indicate a novel mechanism by which pheromone-induced proteins are regulated during the transition from mitosis to conjugation.
    Full-text · Article · Mar 2009 · The Journal of Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In fungi, success of mating requires that both cells agglutinate, modify their extracellular envelopes, and fuse their plasma membranes and nuclei to produce a zygote. Here we studied the role of the Schizosaccharomyces pombe Dni1 protein in the cell fusion step of mating. Dni1p is a tetraspan protein bearing a conserved cystein motif similar to that present in fungal claudin-related proteins. Dni1p expression is induced during mating and Dni1p concentrates as discrete patches at the cell-cell contact area and along the mating bridge. Proper Dni1p localization depends on Fus1p, actin and integrity of lipid rafts. In dni1Delta mutants, cell differentiation and agglutination are as efficient as in the wild-type strain, but cell fusion is significantly reduced at temperatures above 25 degrees C. We found that the defect in cell fusion was not associated with an altered cytoskeleton, with an abnormal distribution of Fus1p, or with a defect in calcium accumulation, but with a severe disorganization of the plasma membrane and cell wall at the area of cell-cell contact. These results show that Dni1p plays a relevant role in co-ordinating membrane organization and cell wall remodelling during mating, a function that has not been described for other proteins in the fission yeast.
    Preview · Article · Aug 2009 · Molecular Microbiology
Show more