Growth reduction among primary school-children with light trichuriasis in Malaysia treated with albendazole

Perdana Specialist Hospital, Kota Bahru, Kelantan, Malaysia.
The Southeast Asian journal of tropical medicine and public health (Impact Factor: 0.72). 01/2013; 44(1):19.


We studied asymptomatic primary schoolchildren in northeastern Ma-laysia with light to moderate trichuriasis to determine the effect of albendazole treatment on growth rates and TNF-alpha levels. Thirty-seven schoolchildren aged 6-7 years with stool samples positive for Trichuris trichiura and negative for other geohelminths and protozoa were randomized to receive albendazole 400 mg or a placebo daily for 2 days. Anthropometric parameters at baseline, 3, 6 and 12 months were compared between the 2 groups. The placebo group had a significantly greater increase in height (p=0.04) than the albendazole treatment group. There were no significant differences in urinary TNF-alpha levels (p=0.8) between the 2 groups and no significant changes between baseline and 1 month post-treatment levels. Further studies are needed to determine the etiology of this apparent association between the albendazole treatment group and the delay in growth rate at 6 months post-treatment.

Download full-text


Available from: Yeong Yeh Lee
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The World Health Organization (WHO) recommends treating all school children at regular intervals with deworming drugs in areas where helminth infection is common. The WHO state this will improve nutritional status, haemoglobin, and cognition and thus will improve health, intellect, and school attendance. Consequently, it is claimed that school performance will improve, child mortality will decline, and economic productivity will increase. Given the important health and societal benefits attributed to this intervention, we sought to determine whether they are based on reliable evidence. To summarize the effects of giving deworming drugs to children to treat soil-transmitted intestinal worms (nematode geohelminths) on weight, haemoglobin, and cognition; and the evidence of impact on physical well being, school attendance, school performance, and mortality. In February 2012, we searched the Cochrane Infectious Diseases Group Specialized Register, MEDLINE, EMBASE, LILACS, mRCT, and reference lists, and registers of ongoing and completed trials. We selected randomized controlled trials (RCTs) and quasi-RCTs comparing deworming drugs for geohelminth worms with placebo or no treatment in children aged 16 years or less, reporting on weight, haemoglobin, and formal test of intellectual development. In cluster-RCTs treating communities or schools, we also sought data on school attendance, school performance, and mortality. We included trials that included health education with deworming. At least two authors independently assessed the trials, evaluated risk of bias, and extracted data. Continuous data were analysed using the mean difference (MD) with 95% confidence intervals (CI). Where data were missing, we contacted trial authors. We used GRADE to assess evidence quality, and this is reflected in the wording we used: high quality ("deworming improves...."); moderate quality ("deworming probably improves..."); low quality ("deworming may improve...."); and very low quality ("we don't know if deworming improves...."). We identified 42 trials, including eight cluster trials, that met the inclusion criteria. Excluding one trial where data are awaited, the 41 trials include 65,168 participants.For programmes that treat only children detected as infected (by screening), a single dose of deworming drugs probably increased weight (0.58 kg, 95% CI 0.40 to 0.76, three trials, 139 participants; moderate quality evidence) and may have increased haemoglobin (0.37 g/dL, 95% CI 0.1 to 0.64, two trials, 108 participants; low quality evidence), but we do not know if there is an effect on cognitive functioning (two trials, very low quality evidence).For a single dose of deworming drugs given to all children in endemic areas, there were mixed effects on weight, with no effects evident in seven trials, but large effects in two. Overall our analysis indicated that we are uncertain whether there was an effect on weight (nine trials, 3058 participants; very low quality evidence). For haemoglobin, deworming made little or no difference (0.02 g/dL, 95% CI -0.05 to 0.09, four trials, 1992 participants; low quality evidence), and we don't know if it improves cognition (one trial, very low quality evidence).For multiple doses of deworming drugs with follow up for up to one year given to all children in endemic areas, we are uncertain if there is an effect on weight (0.06 kg, 95% CI -0.17 to 0.30; seven trials, 2460 participants; very low quality evidence); cognition (three trials, very low quality evidence); or school attendance (4% higher attendance; 95% CI -6 to 14; two trials, 75 clusters and 143 individually randomized participants, very low quality evidence). For haemoglobin, the intervention may have little or no effect (mean 0.01 g/dL lower; 95% CI 0.14 lower to 0.13 higher; four trials, 807 participants; low quality evidence).For multiple doses of deworming drugs with follow up beyond one year given to all children in endemic areas there were five trials with weight measures. One cluster-RCT of 3712 children in a low prevalence area showed a large effect (average gain of 0.98kg), whilst the other four trials did not show an effect, including a cluster-RCT of 27,995 children in a moderate prevalence area. Overall, we are uncertain if there is an effect for weight (five trials, 302 clusters and 1045 individually randomized participants; very low quality evidence). For other outcomes, we are uncertain whether deworming affects height (-0.26 cm; 95%CI -0.84 to 0.31, three trials, 1219 participants); haemoglobin (0.02 g/dL, 95%CI 0.3 to 0.27, two trials, 1365 participants); cognition (two trials), or school attendance (mean attendance 5% higher, 95% CI -0.5 to 10.5, one trial, 50 clusters).Stratified analysis to seek subgroup effects into low, medium and high helminth endemicity areas did not demonstrate any pattern of effect. We did not detect any significant effects for any primary outcomes in a sensitivity analysis only including trials with adequate allocation concealment.One million children were randomized in a deworming trial from India with mortality as the primary outcome. This was completed in 2005 but the authors have not published the results. Screening children for intestinal helminths and then treating infected children appears promising, but the evidence base is small. Routine deworming drugs given to school children has been more extensively investigated, and has not shown benefit on weight in most studies, except for substantial weight changes in three trials conducted 15 years ago or more. Two of these trials were carried out in the same high prevalence setting. For haemoglobin, community deworming seems to have little or no effect, and the evidence in relation to cognition, school attendance, and school performance is generally poor, with no obvious or consistent effect. Our interpretation of this data is that it is probably misleading to justify contemporary deworming programmes based on evidence of consistent benefit on nutrition, haemoglobin, school attendance or school performance as there is simply insufficient reliable information to know whether this is so.
    Full-text · Article · Nov 2012 · Cochrane database of systematic reviews (Online)
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Side Effects of Drugs Annuals form a series of volumes in which the adverse effects of drugs and adverse reactions to them are surveyed. The series supplements the contents of Meyler's Side Effects of Drugs: the International Encyclopedia of Adverse Drug Reactions and Interactions. This review of the January 2012 to June 2013 publications on antihelminthic drugs covers the benzimidazoles albendazole and benznidazole, ivermectin, levamisole and praziquantel. Levamisole has become a very common adulterant of street cocaine and can cause a wide range of adverse reactions, such as neutropenia and agranulocytosis, vasculitis and/or vasculopathy, with a particular predilection for the ears, causing necrosis of the pinnae; skin necrosis; purpuric eruptions, often retiform; antiphospholipid antibody syndrome; and microvascular thrombosis; in some cases combinations of two or more of these reactions occur.
    No preview · Article · Dec 2014 · Side Effects of Drugs Annual
  • [Show abstract] [Hide abstract]
    ABSTRACT: A placebo-controlled study was used to investigate the effectiveness of ivermectin to treat hookworm (Uncinaria sanguinis) and lice (Antarctophthirus microchir) infections in free-ranging Australian sea lion (Neophoca cinerea) pups and to test the hypotheses that these parasitic infections cause anaemia, systemic inflammatory responses, and reduced growth, and contribute towards decreased pup survival. Ivermectin was identified as an effective and safe anthelmintic in this species. Pups administered ivermectin had significantly higher erythrocyte counts and significantly lower eosinophil counts compared to controls at 1-2 months post-treatment, confirming that U. sanguinis and/or A. microchir are causatively associated with disease and demonstrating the positive effect of ivermectin treatment on clinical health parameters. Higher growth rates were not seen in ivermectin-treated pups and, unexpectedly, relatively older pups treated with ivermectin demonstrated significantly reduced growth rates when compared to matched saline-control pups. Differences in survival were not identified between treatment groups; however, this was attributed to the unexpectedly low mortality rate of recruited pups, likely due to the unintended recruitment bias towards pups >1-2 months of age for which mortality due to hookworm infection is less likely. This finding highlights the logistical and practical challenges associated with treating pups of this species shortly after birth at a remote colony. This study informs the assessment of the use of anthelmintics as a tool for the conservation management of free-ranging wildlife and outlines essential steps to further the development of strategies to ensure the effective conservation of the Australian sea lion and its parasitic fauna.
    No preview · Article · Apr 2015 · Parasitology Research