Long-Range Enhancer Differentially Regulated by c-Jun and JunD Controls Peptidylarginine Deiminase-3 Gene in Keratinocytes

UMR 5165, CNRS-Toulouse III University, CHU Purpan, Place du Dr Baylac TSA4003, 31059 Toulouse cedex 9, France.
Journal of Molecular Biology (Impact Factor: 4.33). 11/2008; 384(5):1048-57. DOI: 10.1016/j.jmb.2008.10.019
Source: PubMed


Long-range cis elements are critical regulators of transcription, particularly for clustered paralogous genes. Such are the five PADI genes in 1p35-36 encoding peptidylarginine deiminases, which catalyze deimination, a Ca2+-dependent post-translational modification. Deimination has been implicated in the pathophysiology of severe human diseases such as multiple sclerosis and rheumatoid arthritis. The PADI genes present different expression patterns. PADI1-3 are expressed in the epidermis, with increased expression levels in the most differentiated keratinocytes. Previous studies on PADI proximal promoters failed to explain such specificity of expression. We identified a conserved intergenic sequence in the PADI locus (IG1), which may play a role in PADI transcriptional regulation. In this work, we identified two DNase I.hypersensitive sites located in IG1, PAD intergenic enhancer segment 1 (PIE-S1) and PIE-S2, which act in synergy as a bipartite enhancer of the PADI3 and probably PADI1 promoters in normal human epidermal keratinocytes differentiated by a high-calcium-containing medium (1.5 mM). PIE-S1 and PIE-S2 present all the hallmarks of transcriptional enhancers: orientation-independence, copy-number dependence and cell-type specificity. PIE-S1 and PIE-S2 comprise conserved putative binding sites for MIBP1/RFX1 and activator protein 1, respectively. Deletion mutant screening revealed that these sites are crucial for the enhancer activity. Furthermore, chromatin immunoprecipitation assays evidenced differential binding of JunD or c-Jun on the activator protein 1 site depending on the cell differentiation state. Our results reveal the molecular bases of the expression specificity of PADI1 and PADI3 during keratinocyte differentiation through a long-range enhancer and support a model of PADI gene regulation depending on c-Jun-JunD competition.

5 Reads
  • Source
    • "The spatially complex expression patterns displayed by many genes often rely on the presence of remote regulatory elements that modulate the activity of gene promoters in a tissue-specific or stimulus-inducible manner [47]. In addition, there is evidence that the interaction of these remote regulatory elements with the promoters of the genes they regulate is highly specific [48,49,50]. In the past, the identification of these remote regulatory elements by deletion analysis was very labour intensive and time consuming. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in the expression of the neuropeptide substance P (SP) in different populations of sensory neurones are associated with the progression of chronic inflammatory disease. Thus, understanding the genomic and cellular mechanisms driving the expression of the TAC1 gene, which encodes SP, in sensory neurones is essential to understanding its role in inflammatory disease. We used a novel combination of computational genomics, primary-cell culture and mouse transgenics to determine the genomic and cellular mechanisms that control the expression of TAC1 in sensory neurones. Intriguingly, we demonstrated that the promoter of the TAC1 gene must act in synergy with a remote enhancer, identified using comparative genomics, to respond to MAPK signalling that modulates the expression of TAC1 in sensory neurones. We also reveal that noxious stimulation of sensory neurones triggers this synergy in larger diameter sensory neurones--an expression of SP associated with hyperalgesia. This noxious stimulation of TAC1 enhancer-promotor synergy could be strongly blocked by antagonism of the MEK pathway. This study provides a unique insight into the role of long-range enhancer-promoter synergy and selectivity in the tissue-specific response of promoters to specific signal transduction pathways and suggests a possible new avenue for the development of novel anti-inflammatory therapies.
    Full-text · Article · Dec 2010 · Neurosignals
  • [Show abstract] [Hide abstract]
    ABSTRACT: HO-1 (heme oxygenase-1) is an inducible microsomal enzyme that catalyzes the degradation of pro-oxidant heme. The goal of this study was to characterize a minimal enhancer region within the human HO-1 gene and delineate its role in modulating HO-1 expression by participation with its promoter elements in renal epithelial cells. Deletion analysis and site-directed mutagenesis identified a 220-bp minimal enhancer in intron 1 of the HO-1 gene, which regulates hemin-mediated HO-1 gene expression. Small interfering RNA, decoy oligonucleotides, site-directed mutagenesis, and chromatin immunoprecipitation assays confirmed the functional interaction of Sp1 with a consensus binding sequence within the 220-bp region. Mutations of regulatory elements within the -4.5 kb promoter region (a cyclic AMP response and a downstream NF-E2/AP-1 element, both located at -4.0 kb, and/or an E-box sequence located at -44 bp) resulted in the loss of enhancer activity. A chromosome conformation capture assay performed in human renal epithelial (HK-2) cells demonstrated hemin-inducible chromatin looping between the intronic enhancer and the -4.0 kb promoter region in a time-dependent manner. Restriction digestion with ApaLI (which cleaves the 220-bp enhancer) led to a loss of stimulus-dependent chromatin looping. Sp1 small interfering RNA and mithramycin A, a Sp1 binding site inhibitor, resulted in loss of the loop formation between the intronic enhancer and the distal HO-1 promoter by the chromosome conformation capture assay. These results provide novel insight into the complex molecular interactions that underlie human HO-1 regulation in renal epithelial cells.
    No preview · Article · Mar 2010 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptidylarginine deiminases (PADs) catalyze deimination, converting arginyl to citrullyl residues. Only three PAD isotypes are detected in the epidermis where they play a crucial role, targeting filaggrin, a key actor for the tissue hydration and barrier functions. Their expression and activation depends on the keratinocyte differentiation state. To investigate this regulation, we used primary keratinocytes induced to differentiate either by increasing cell-density or by treatment with vitamin D. High cell-density increased PAD1 and 3, but not PAD2, at the mRNA and protein levels, and up-regulated protein deimination. By contrast, vitamin D increased PAD1-3 mRNA amounts, with distinct kinetics, but neither the proteins nor the deimination rate. Furthermore, auto-deimination was shown to decrease PAD activity, increasing the distances between the four major amino acids of the active site. In summary, deimination can be regulated at multiple levels: transcription of the PADI genes, translation of the corresponding mRNAs, and auto-deimination of PADs.
    No preview · Article · May 2010 · Cellular and Molecular Life Sciences CMLS
Show more