Genetic Analysis of Avian Influenza Viruses: Cocirculation of Avian Influenza Viruses with Allele A and B Nonstructural Gene in Northern Pintail (Anas acuta) Ducks Wintering in Japan

Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh.
Influenza research and treatment 12/2012; 2012(2):847505. DOI: 10.1155/2012/847505
Source: PubMed


The pandemic influenza virus strains of 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) have genes related to avian influenza viruses (AIVs). The nonstructural (NS) gene of AIVs plays a significant role in host-viral interaction. However, little is known about the degree of diversity of this gene in Northern pintail (Anas acuta) ducks wintering in Japan. This study describes characteristics of pintail-originated H1N1, H1N2, H1N3, H5N2, H5N3, H5N9, and H7N7 viruses. Most of the viruses were revealed to be avian strains and not related to pandemic and seasonal flu strains. Nevertheless, the NP genes of 62.5% (5/8) viruses were found closely related to a A/swine/Korea/C12/08, indicating exchange of genetic material and ongoing mammalian-linked evolution of AIVs. Besides, all the viruses, except Aomori/422/07 H1N1, contain PSIQSR∗GLF motif usually found in avian, porcine, and human H1 strains. The Aomori/422/07 H1N1 has a PSVQSR∗GLF motif identical to a North American strain. This findings linked to an important intercontinental, Asian-American biogeographical interface. Phylogenetically all the viruses were clustered in Eurasian lineage. Cocirculation of allele A and B (NS gene) viruses was evident in the study implying the existence of a wide reservoir of influenza A viruses in pintail wintering in Japan.

Download full-text


Available from: Jahangir Alam, Aug 11, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the nonstructural gene (NS) of the influenza A virus plays a crucial role in viral virulence and replication, the complete understanding of its molecular phylogeny and evolutionary dynamics remains lacking. In this study, the phylogenetic analysis of 7,581 NS sequences revealed ten distinct lineages within alleles A and B: three host-specific (human, classical swine and equine), two reassortment-originated (A(H1N1)pdm09 and triple reassortment swine), one transmission-originated (Eurasian swine), and two geographically isolated avian (Eurasian/Oceanian and North American) for allele A and two geographically isolated avian (Eurasian/Oceanian and North American) for allele B. The average nucleotide substitution rates of the lineages range from 1.24×10(-3) (equine) to 4.34×10(-3) (A(H1N1)pdm09) substitutions per site per year. The selection pressure analysis demonstrated that the dN/dS ratio of the NS gene in A(H1N1)pdm09 lineage was higher than its closely related triple reassortant swine, which could be attributed to the adaptation to the new host and/or intensive surveillance after the inter-species transmission from swine to human. The positive selection sites were found in all lineages except the equine lineage and mostly in the NS1 region. The positive selection sites 22, 26, 226, 227 and 230 of the human lineage are significant because these residues participate in either forming the dimerization of the two RNA binding domain (RBD) monomers or blocking the replication of host genes. Residues at position 171 provide hydrophobic interactions with hydrophobic residues at p85β and thus induce viral cell growth. The lineages and evolutionary dynamics of influenza A NS gene obtained in this study, along with the studies of other gene segments, are expected to improve the early detection of new viruses and thus have the potential to enhance influenza surveillance.
    No preview · Article · Oct 2013 · Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The formation of pandemic influenza genotypes varied phylogeographically and ecophylogenetically throughout their fully recognized recent 100-years natural history, involving consistently avian plus human genes, and at times swine genes. The last four traceable pandemic strains (PSs) included two American H1N1 viruses with genomes predominantly containing swine genes, of which at least one genome originated from both America and Eurasia; and two non-H1N1 Asian viruses with genomes entirely originating from Asia, and having no swine genes. This study explores whether there is a particular interhemispheric system underlying such divergence, and its properties. Unlike the assumption that transport of live pigs from Eurasia to America facilitated the formation of the 2009 H1N1 PS in America, it is suggested that conveyance of Eurasian swine genes to America, and their assimilation therein, took place through a distinct, perfectly natural ecophylogenetic machinery. The latter conjunctively involves, foremost, a native Asian duck-swine-man interface, a Holarctic chain of certain migratory Anas ducks, a native American turkey-swine-man interface, and two specific clades of American influenza A viruses. Likewise, the described machinery could have readily given rise to the 1918 H1N1, and, presumably, earlier American PSs, altogether constituting private cases of a much broader, self-sustained, permanent phylogeographic system.
    No preview · Article · Jul 2014 · Critical Reviews in Microbiology