Nonlinear motion compensation using cubature Kalman filter for in vivo fluorescence microendoscopy in peripheral lung cancer intervention

ArticleinJournal of Biomedical Optics 18(1):16008 · January 2013with9 Reads
DOI: 10.1117/1.JBO.18.1.016008 · Source: PubMed
Fluorescence microendoscopy can potentially be a powerful modality in minimally invasive percutaneous intervention for cancer diagnosis because it has an exceptional ability to provide micron-scale resolution images in tissues inaccessible to traditional microscopy. After targeting the tumor with guidance by macroscopic images such as computed tomorgraphy or magnetic resonance imaging, fluorescence microendoscopy can help select the biopsy spots or perform an on-site molecular imaging diagnosis. However, one challenge of this technique for percutaneous lung intervention is that the respiratory and hemokinesis motion often renders instability of the sequential image visualization and results in inaccurate quantitative measurement. Motion correction on such serial microscopy image sequences is, therefore, an important post-processing step. We propose a nonlinear motion compensation algorithm using a cubature Kalman filter (NMC-CKF) to correct these periodic spatial and intensity changes, and validate the algorithm using preclinical imaging experiments. The algorithm integrates a longitudinal nonlinear system model using the CKF in the serial image registration algorithm for robust estimation of the longitudinal movements. Experiments were carried out using simulated and real microendoscopy videos captured from the CellVizio 660 system in rabbit VX2 cancer intervention. The results show that the NMC-CKF algorithm yields more robust and accurate alignment results.
  • [Show abstract] [Hide abstract] ABSTRACT: We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to approximately 2-5 microm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
    Article · Oct 2007
  • [Show abstract] [Hide abstract] ABSTRACT: Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.
    Full-text · Article · Aug 2008
  • [Show abstract] [Hide abstract] ABSTRACT: Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.
    Full-text · Article · Oct 2009
Show more

Recommended publications

Discover more