Analyzing the Catalytic Mechanism of the Fe-Type Nitrile Hydratase from Comamonas testosteroni Ni1

Department of Chemistry, Loyola University--Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, USA.
Biochemistry (Impact Factor: 3.02). 11/2008; 47(46):12057-64. DOI: 10.1021/bi801623t
Source: PubMed


In order to gain insight into the catalytic mechanism of Fe-type nitrile hydratases (NHase), the pH and temperature dependence of the kinetic parameters k cat, K m, and k cat/ K m along with the solvent isotope effect were examined for the Fe-type NHase from Comamonas testosteroni Ni1 ( CtNHase). CtNHase was found to exhibit a bell-shaped curve for plots of relative activity vs pH over pH values 4-10 for the hydration of acrylonitrile and was found to display maximal activity at pH approximately 7.2. Fits of these data provided a p K ES1 value of 6.1 +/- 0.1, a p K ES2 value of 9.1 +/- 0.2 ( k' cat = 10.1 +/- 0.3 s (-1)), a p K E1 value of 6.2 +/- 0.1, and a p K E2 value of 9.2 +/- 0.1 ( k' cat/ K' m of 2.0 +/- 0.2 s (-1) mM (-1)). Proton inventory studies indicate that two protons are transferred in the rate-limiting step of the reaction at pH 7.2. Since CtNHase is stable to 25 degrees C, an Arrhenius plot was constructed by plotting ln( k cat) vs 1/ T, providing an E a of 33.3 +/- 1.5 kJ/mol. Delta H degrees of ionization values were also determined, thus helping to identify the ionizing groups exhibiting the p K ES1 and p K ES2 values. Based on Delta H degrees ion data, p K ES1 is assigned to betaTyr68 while p K ES2 is assigned to betaArg52, betaArg157, or alphaSer116 (NHases are alpha 2beta 2 heterotetramers). Given the strong similarities in the kinetic data obtained for both Co- and Fe-type NHase enzymes, both types of NHase enzymes likely hydrate nitriles in a similar fashion.

11 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiocyanate hydrolase (SCNase) is a member of a family of nitrile hydratase proteins, each of which contains a unique noncorrin cobalt center with two post-translationally modified cysteine ligands, cysteine-sulfenic acid or -sulfenate (Cys-SO(H)), and cysteine-sulfininate (Cys-SO(2)(-)), respectively. We have found that a partially matured recombinant SCNase was activated during storage. The crystal structures of SCNase before and after storage demonstrated that Cys-SO(2)(-) modification of gammaCys131 proceeded to completion prior to storage, while Cys-SO(H) modification of gammaCys133 occurred during storage. SCNase activity was suppressed when gammaCys133 was further oxidized to Cys-SO(2)(-). The correlation between the catalytic activity and the extent of the gammaCys133 modification indicates that the cysteine sulfenic acid modification of gammaCys133 is of primary importance in determining the activity of SCNase.
    No preview · Article · Sep 2009 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe(3+) or Co(3+) center with two modified Cys ligands: cysteine sulfininate (Cys-SO(2) (-)) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, alphaS113A and betaY72F. The alphaS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV-vis absorption spectra indicated that the electronic state of the Fe center was altered by the alphaS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the alphaS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV-vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The betaY72F mutant exhibited no activity. The structure of the betaY72F mutant was highly conserved but was found to be the inactivated state, with alphaCys114-SO(H) oxidized to Cys-SO(2) (-), suggesting that betaTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.
    No preview · Article · Mar 2010 · European Journal of Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrile hydratases (NHases) are non-heme Fe(III) or non-corrin Co(III) containing metalloenzymes that possess an N(2)S(3) ligand environment with nitrogen donors derived from amidates and sulfur donors derived from cysteinates. A closely related enzyme is thiocyanate hydrolase (SCNase), which possesses a nearly identical active-site coordination environment as CoNHase. These enzymes are redox inactive and perform hydrolytic reactions; SCNase hydrolyzes thiocyanate anions while NHase converts nitriles into amides. Herein an active CoNHase metallopeptide mimic, [Co(III)NHase-m1] (NHase-m1 = AcNH-CCDLP-CGVYD-PA-COOH), that contains Co(III) in a similar N(2)S(3) coordination environment as CoNHase is reported. [Co(III)NHase-m1] was characterized by electrospray ionization-mass spectrometry (ESI-MS), gel-permeation chromatography (GPC), Co K-edge X-ray absorption spectroscopy (Co-S: 2.21 Å; Co-N: 1.93 Å), vibrational, and optical spectroscopies. We find that [Co(III)NHase-m1] will perform the catalytic conversion of acrylonitrile into acrylamide with up to 58 turnovers observed after 18 h at 25 °C (pH 8.0). FTIR data used in concert with calculated vibrational data (mPWPW91/aug-cc-TZVPP) demonstrates that the active form of [Co(III)NHase-m1] has a ligated SO(2) (ν = 1091 cm(-1)) moiety and a ligated protonated SO(H) (ν = 928 cm(-1)) moiety; when only one oxygenated cysteinate ligand (i.e., a mono-SO(2) coordination motif) or the bis-SO(2) coordination motif are found within [Co(III)NHase-m1] no catalytic activity is observed. Calculations of the thermodynamics of ligand exchange (B3LYP/aug-cc-TZVPP) suggest that the reason for this is that the SO(2)/SO(H) equatorial ligand motif promotes both water dissociation from the Co(III)-center and nitrile coordination to the Co(III)-center. In contrast, the under- or overoxidized motifs will either strongly favor a five coordinate Co(III)-center or strongly favor water binding to the Co(III)-center over nitrile binding.
    No preview · Article · Oct 2010 · Inorganic Chemistry
Show more