Humans parasitized by the hard tick Ixodes ricinus are seropositive to Midichloria mitochondrii: Is Midichloria a novel pathogen, or just a marker of tick bite?

Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy.
Pathogens and global health 11/2012; 106(7):391-6. DOI: 10.1179/2047773212Y.0000000050
Source: PubMed


Midichloria mitochondrii is an intracellular bacterium found in the hard tick Ixodes ricinus. In this arthropod, M. mitochondrii is observed in the oocytes and in other cells of the ovary, where the symbiont is present in the cell cytoplasm and inside the mitochondria. No studies have so far investigated whether M. mitochondrii is present in the salivary glands of the tick and whether it is transmitted to vertebrates during the tick blood meal. To address the above issues, we developed a recombinant antigen of M. mitochondrii (to screen human sera) and antibodies against this antigen (for the staining of the symbiont). Using these reagents we show that (i) M. mitochondrii is present in the salivary glands of I. ricinus and that (ii) seropositivity against M. mitochondrii is highly prevalent in humans parasitized by I. ricinus (58%), while it is very low in healthy individuals (1·2%). These results provide evidence that M. mitochondrii is released with the tick saliva and raise the possibility that M. mitochondrii is infectious to vertebrates. Besides this, our study indicates that M. mitochondrii should be regarded as a package of antigens inoculated into the human host during the tick bite. This implies that the immunology of the response toward the saliva of I. ricinus is to be reconsidered on the basis of potential effects of M. mitochondrii and poses the basis for the development of novel markers for investigating the exposure of humans and animals to this tick species.

Download full-text


Available from: Mara Mariconti
  • Source
    • "On the other hand, Borrelia burgdorferi sensu lato, the main pathogen transmitted by Ixodes ticks, does possess immunogenic flagella. However, published results show that, in humans exposed to tick bite, a high proportion of the subjects positive to M. mitochondrii are negative to B. burgdorferi (and vice-versa), indicating the absence of immunological cross-reactivity among the FliD proteins of Midichloria and Borrelia bacteria [11]. On the other hand, cross-reactivity of rFliD could be expected toward other bacteria from the genus Midichloria, under the reasonable assumption that other bacteria from this genus possess the flagellar gene fliD. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Midichloriaceae is a novel family of the order Rickettsiales, that encompasses intracellular bacteria associated with hard ticks (Ixodidae) and other arthropods. The most intensively investigated member of this family is Midichloria mitochondrii, a symbiotic bacterium of the sheep tick Ixodes ricinus, characterized by the capacity of multiplying inside the mitochondria. A recent study suggested that these bacteria might be inoculated into the human host during the tick bite. The purpose of this study was to determine the potential infectivity of Midichloria bacteria for non-human animals exposed to the risk of tick bite. Blood from horses, cattle, sheep and dogs exposed to the risk of tick bite was included in this study. DNAs were extracted, and amplified using 16S ribosomal RNA primers conserved in the Midichloria genus. Furthermore, sera from dogs exposed to the risk of tick bite were analyzed in order to evaluate the presence of antibodies against the recombinant flagellar protein (rFliD) from M. mitochondrii using an ELISA test. Here we present two lines of evidence that support the possibility that bacteria from the genus Midichloria are inoculated into vertebrate hosts during a tick bite: (i) a direct evidence, i.e. the detection of circulating DNA from bacteria related with M. mitochondrii, in the blood of vertebrates exposed to tick parasitism; (ii) a further indirect evidence, i.e. the presence of antibodies against an antigen from M. mitochondrii in dogs exposed to the risk of tick bite. It is interesting to note that variability was detected in the Midichloria gene sequences recovered from positive animals, and that some of these sequences were identical to those generated from tick-associated Midichloria. Based on the results, and on the overall information so far published on the genus Midichloria, we suggest that these bacteria are likely to represent a novel group of vector-borne agents, with the potential of infecting mammalian hosts. Whether inoculation of Midichloria bacteria could cause a true infection and pathological alteration in mammalian hosts is still to be determined. Surely, results emphasize the relevance of Midichloria bacteria in investigations on tick immunology and tick-bite markers.
    Full-text · Article · Dec 2013 · Parasites & Vectors
  • Source
    • "These endosymbiotic bacteria persistently infect all life cycle stages of the ticks and are passed on to the next generation transovarially. It is unclear whether or not bacterial endosymbionts are transmitted to vertebrates during tick feeding; a recent study of humans bitten by Ixodes ticks suggests that salivary transmission of the intramitochondrial tick symbiont Candidatus Midichloria mitochondrii (Sassera et al., 2006) can occur to a level sufficient to induce production of specific antibodies (Mariconti et al., 2012). In contrast, Rickettsia peacockii, an endosymbiont of the tick Dermacentor andersoni, was not pathogenic for laboratory animals and failed to infect a range of mammalian cells in vitro (Kurtti et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ticks transmit a wide range of viral, bacterial and protozoan pathogens, many of which can establish persistent infections of lifelong duration in the vector tick and in some cases are transmitted transovarially to the next generation. In addition many ixodid and argasid tick cell lines and, by inference the parent ticks from which they were derived, harbor endogenous viruses (ETV) of which almost nothing is known. In general, low level persistent infections with viral pathogens (arboviruses) are not known to have a deleterious effect on tick survival and fitness, suggesting that they can strike a balance with the tick innate immune response. This tolerance of arbovirus infection may be modulated by the permanent presence of ETV in the host cell. In mosquito cells, temporary or permanent silencing of the genes of an endogenous virus by RNA interference can result in changes in replication rate of a co-infecting arbovirus. We propose that tick cell lines offer a useful model system for in vitro investigation of the modulatory effect of ETV on superinfecting pathogen survival and replication in ticks, using the molecular manipulation techniques applied to insect cells.
    Full-text · Article · Jul 2013 · Frontiers in Cellular and Infection Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: “Candidatus Midichloria mitochondrii” is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus. Bacteria phylogenetically related to “Ca. Midichloria mitochondrii” (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including humans. Despite numerous studies focused on specific members of the MALO group, no comprehensive phylogenetic and statistical analyses have so far been performed on the group as a whole. Here, we present a multidisciplinary investigation based on 16S rRNA gene sequences using both phylogenetic and statistical methods, thereby analyzing MALOs in the overall framework of the Rickettsiales. This study revealed that (i) MALOs form a monophyletic group; (ii) the MALO group is structured into distinct subgroups, verifying current genera as significant evolutionary units and identifying several subclades that could represent novel genera; (iii) the MALO group ranks at the level of described Rickettsiales families, leading to the proposal of the novel family “Candidatus Midichloriaceae.” In addition, based on the phylogenetic trees generated, we present an evolutionary scenario to interpret the distribution and life history transitions of these microorganisms associated with highly divergent eukaryotic hosts: we suggest that aquatic/environmental protista have acted as evolutionary reservoirs for members of this novel family, from which one or more lineages with the capacity of infecting metazoa have evolved.
    Full-text · Article · Mar 2013 · Applied and Environmental Microbiology
Show more