Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta)

Marine Biology, Department of Biology, University of Oslo, P.O. Box 1066, 0316, Oslo, Norway, .
Environmental Science and Pollution Research (Impact Factor: 2.83). 12/2012; Environmental Science and Pollution Research(20):6733 - 6750. DOI: 10.1007/s11356-012-1403-1
Source: PubMed


Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project ( The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.

Electronic supplementary material
The online version of this article (doi:10.1007/s11356-012-1403-1) contains supplementary material, which is available to authorized users.

Download full-text


Available from: Bente Edvardsen
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monitoring of marine microalgae is important to predict and manage harmful algal blooms. Microarray Detection of Toxic ALgae (MIDTAL) is an FP7-funded EU project aiming to establish a multi-species microarray as a tool to aid monitoring agencies. We tested the suitability of different prototype versions of the MIDTAL microarray for the monthly monitoring of a sampling station in outer Oslofjorden during a 1-year period. Microarray data from two different versions of the MIDTAL chip were compared to results from cell counts (several species) and quantitative real-time PCR (qPCR; only Pseudochattonella spp.). While results from generation 2.5 microarrays exhibited a high number of false positive signals, generation 3.3 microarray data generally correlated with microscopy and qPCR data, with three important limitations: (1) Pseudo-nitzschia cells were not reliably detected, possibly because cells were not sufficiently retained during filtration or lysed during the extraction, and because of low sensitivity of the probes; (2) in the case of samples with high concentrations of non-target species, the sensitivity of the arrays was decreased; (3) one occurrence of Alexandrium pseudogonyaulax was not detected due to a 1-bp mismatch with the genus probe represented on the microarray. In spite of these shortcomings our data demonstrate the overall progress made and the potential of the MIDTAL array. The case of Pseudochattonella - where two morphologically similar species impossible to separate by light microscopy were distinguished - in particular, underlines the added value of molecular methods such as microarrays in routine phytoplankton monitoring.
    Full-text · Article · Jan 2013 · Environmental Science and Pollution Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytoflagellates of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta) form blooms in marine coastal waters in northern Europe, Japan, and New Zealand that at times cause fish kills with severe losses for the aquaculture industry. The aim of this study was to develop molecular probes for the detection and identification of Pseudochattonella at the genus and species level. A variety of probes were developed and applied to either dot blot hybridization, (q)PCR, or microarray format. In the dot blot hybridization assay, five different oligonucleotide probes targeting the small subunit (SSU) rDNA were tested against DNA from 18 microalgal strains and shown to be specific to the genus Pseudochattonella. A genus-specific PCR assay was developed by identifying an appropriate primer pair in the SSU-internal transcribed spacer 1 (ITS1) rDNA region. Its specificity was tested by screening against both target and non-target strains, and the assay was used to confirm the presence or absence of Pseudochattonella species in environmental samples. In order to distinguish between the two species of the genus, two PCR primer pairs each biased towards one of the species were designed in the large subunit (LSU) rDNA D1 domain and used for quantitative real-time PCR. Five selected probes (three SSU and two LSU rDNA) were adapted for the use on microarrays and included on a prototype multi-species microarray for the detection of harmful algae ( ). Finally, microarrays and qPCR were used for the monthly monitoring of a sampling site in outer Oslofjorden during a 1-year period. Members of Pseudochattonella are difficult to identify by light microscopy in Lugol's preserved samples, and the two species Pseudochattonella verruculosa and Pseudochattonella farcimen can be morphologically distinguished only by transmission electron microscopy. The molecular probes designed in this study will be a valuable asset to microscopical detection methods in the monitoring of harmful algae and for biogeographical and ecological studies of this genus.
    Full-text · Article · Jan 2013 · Environmental Science and Pollution Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which shows promise for monitoring natural samples in the future.
    No preview · Article · Dec 2013 · Environmental Science and Pollution Research
Show more