Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers

1] Howard Hughes Medical Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA [2] Departments of Medicine and Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA [3].
Nature Communications (Impact Factor: 11.47). 12/2012; 3:1310. DOI: 10.1038/ncomms2306
Source: PubMed


One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. Here we report that a Plasmodium Asn repeat-containing protein (PFI1155w) formed aggregates in mammalian cells at febrile temperatures, as did a yeast Asn/Gln-rich protein (Sup35). Co-expression of the cytoplasmic P. falciparum heat shock protein 110 (PfHsp110c) prevented aggregation. Human or yeast orthologs were much less effective. All-Asn and all-Gln versions of Sup35 were protected from aggregation by PfHsp110c, suggesting that this chaperone is not limited to handling runs of asparagine. PfHsp110c gene-knockout parasites were not viable and conditional knockdown parasites died slowly in the absence of protein-stabilizing ligand. When exposed to brief heat shock, these knockdowns were unable to prevent aggregation of PFI1155w or Sup35 and died rapidly. We conclude that PfHsp110c protects the parasite from harmful effects of its asparagine repeat-rich proteome during febrile episodes.

  • Source
    • "Indeed, it has been recently demonstrated that the stability of several Plasmodium proteins depends upon their association with heat shock proteins which act as molecular chaperones [58]. Therefore, recombinant protein expression in the HEK293 system could be further enhanced by the presence of PfHsp110c, which has been proposed to be a protein-stabilizing chaperone [58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum is the aetiological agent for malaria, a deadly infectious disease for which no vaccine has yet been licensed. The proteins displayed on the merozoite cell surface have long been considered attractive vaccine targets because of their direct exposure to host antibodies; however, progress in understanding the functional role of these targets has been hindered by technical challenges associated with expressing these proteins in a functionally active recombinant form. To address this, a method that enables the systematic expression of functional extracellular Plasmodium proteins was previously developed, and used to create a library of 42 merozoite proteins. To compile a more comprehensive library of recombinant proteins representing the repertoire of P. falciparum merozoite extracellular proteins for systematic vaccine and functional studies, genome-wide expression profiling was used to identify additional candidates. Candidate proteins were recombinantly produced and their integrity and expression levels were tested by Western blotting and ELISA. Twenty-five additional genes that were upregulated during late schizogony, and predicted to encode secreted and cell surface proteins, were identified and expressed as soluble recombinant proteins. A band consistent with the entire ectodomain was observed by immunoblotting for the majority of the proteins and their expression levels were quantified. By using sera from malaria-exposed immune adults, the immunoreactivity of 20 recombinant proteins was assessed, and most of the merozoite ligands were found to carry heat-labile epitopes. To facilitate systematic comparative studies across the entire library, multiple Plasmodium proteins were simultaneously purified using a custom-made platform. A library of recombinant P. falciparum secreted and cell surface proteins was expanded by 20 additional proteins, which were shown to express at usable levels and contain conformational epitopes. This resource of extracellular P. falciparum merozoite proteins, which now contains 62 full-length ectodomains, will be a valuable tool in elucidating the function of these proteins during the blood stages of infection, and facilitate the comparative assessment of blood stage vaccine candidates.
    Full-text · Article · Mar 2014 · Malaria Journal
  • Source
    • "In a strategy similar to that described above, we tagged PfAtg7 with a regulatable fluorescent affinity tag (RFA), an approach that has been successful for regulated protein attenuation in P. falciparum [30], [43]. This construct adds the RFA tag to the C-terminus, which results in the Atg7 protein fused to an attenuable destabilization domain (in addition to GFP and HA), which is stabilized by the presence of the folate analog trimethoprim (TMP) in the growth medium. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of the Plasmodium falciparum genome reveals a limited number of putative autophagy genes, specifically the four genes involved in ATG8 lipidation, an essential step in formation of autophagosomes. In yeast, Atg8 lipidation requires the E1-type ligase Atg7, an E2-type ligase Atg3, and a cysteine protease Atg4. These four putative P. falciparum ATG (PfATG) genes are transcribed during the parasite's erythrocytic stages. PfAtg7 has relatively low identity and similarity to yeast Atg7 (14.7% and 32.2%, respectively), due primarily to long insertions typical of P. falciparum. Excluding the insertions the identity and similarity are higher (38.0% and 70.8%, respectively). This and the fact that key residues are conserved, including the catalytic cysteine and ATP binding domain, we hypothesize that PfAtg7 is the activating enzyme of PfAtg8. To assess the role of PfAtg7 we have generated two transgenic parasite lines. In one, the PfATG7 locus was modified to introduce a C-terminal hemagglutinin tag. Western blotting reveals two distinct protein species, one migrating near the predicted 150 kDa and one at approximately 65 kDa. The second transgenic line introduces an inducible degradation domain into the PfATG7 locus, allowing us to rapidly attenuate PfAtg7 protein levels. Corresponding species are also observed in this parasite line at approximately 200 kDa and 100 kDa. Upon PfATG7 attenuation parasites exhibit a slow growth phenotype indicating the essentiality of this putative enzyme for normal growth.
    Preview · Article · Jun 2013 · PLoS ONE
  • Source
    • "So far only one of our Plasmodium PrDs candidates has been characterized experimentally: PFI115w (Q8I2S1_PLAF7). In agreement with our prediction, the protein aggregates intracellularly when expressed in human cells [82]. Plasmodium chaperones act as cellular capacitors allowing the accumulation of potentially deleterious PrDs, whose presence should therefore provide certain advantage to the organism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Prion proteins conform a special class among amyloids due to their ability to transmit aggregative folds. Prions are known to act as infectious agents in neurodegenerative diseases in animals, or as key elements in transcription and translation processes in yeast. It has been suggested that prions contain specific sequential domains with distinctive amino acid composition and physicochemical properties that allow them to control the switch between soluble and β-sheet aggregated states. Those prion-forming domains are low complexity segments enriched in glutamine/asparagine and depleted in charged residues and prolines. Different predictive methods have been developed to discover novel prions by either assessing the compositional bias of these stretches or estimating the propensity of protein sequences to form amyloid aggregates. However, the available algorithms hitherto lack a thorough statistical calibration against large sequence databases, which makes them unable to accurately predict prions without retrieving a large number of false positives. Results Here we present a computational strategy to predict putative prion-forming proteins in complete proteomes using probabilistic representations of prionogenic glutamine/asparagine rich regions. After benchmarking our predictive model against large sets of non-prionic sequences, we were able to filter out known prions with high precision and accuracy, generating prediction sets with few false positives. The algorithm was used to scan all the proteomes annotated in public databases for the presence of putative prion proteins. We analyzed the presence of putative prion proteins in all taxa, from viruses and archaea to plants and higher eukaryotes, and found that most organisms encode evolutionarily unrelated proteins with susceptibility to behave as prions. Conclusions To our knowledge, this is the first wide-ranging study aiming to predict prion domains in complete proteomes. Approaches of this kind could be of great importance to identify potential targets for further experimental testing and to try to reach a deeper understanding of prions’ functional and regulatory mechanisms.
    Full-text · Article · May 2013 · BMC Genomics
Show more