A CC-SAM, for Coiled Coil-Sterile α Motif, Domain Targets the Scaffold KSR-1 to Specific Sites in the Plasma Membrane.

1Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA.
Science Signaling (Impact Factor: 6.28). 12/2012; 5(255):ra94. DOI: 10.1126/scisignal.2003289
Source: PubMed


Kinase suppressor of Ras-1 (KSR-1) is an essential scaffolding protein that coordinates the assembly of the mitogen-activated protein kinase (MAPK) module, consisting of the MAPK kinase kinase Raf, the MAPK kinase MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and the MAPK ERK (extracellular signal-regulated kinase) to facilitate activation of MEK and thus ERK. Although KSR-1 is targeted to the cell membrane in part by its atypical C1 domain, which binds to phospholipids, other domains may be involved. We identified another domain in KSR-1 that we termed CC-SAM, which is composed of a coiled coil (CC) and a sterile α motif (SAM). The CC-SAM domain targeted KSR-1 to specific signaling sites at the plasma membrane in growth factor-treated cells, and it bound directly to various micelles and bicelles in vitro, indicating that the CC-SAM functioned as a membrane-binding module. By combining nuclear magnetic resonance spectroscopy and experiments in cultured cells, we found that membrane binding was mediated by helix α3 of the CC motif and that mutating residues in α3 abolished targeting of KSR-1 to the plasma membrane. Thus, in addition to the atypical C1 domain, the CC-SAM domain is required to target KSR-1 to the plasma membrane.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Store-operated calcium (Ca(2+)) entry (SOCE) is a vital Ca(2+) signaling pathway in nonexcitable as well as electrically excitable cells, regulating countless physiological and pathophysiological pathways. Stromal interaction molecules (STIMs) are the principal regulating molecules of SOCE, sensing changes in sarco-/endoplasmic reticulum (S/ER) luminal Ca(2+) levels and directly interacting with the Orai channel subunits to orchestrate the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels. Recent atomic resolution structures on human STIM1 and STIM2 have illuminated critical mechanisms of STIM function in SOCE; further, the first high-resolution structure of the Drosophila melanogaster Orai channel has revealed vital data on the atomic composition of the CRAC channel pore and the assembly of individual Orai subunits. This chapter focuses on the mechanistic information garnered from these high-resolution structures and the supporting biophysical, biochemical, and live cell work that has enhanced our understanding of the relationship between STIM and Orai structural features and CRAC channel function.
    No preview · Article · Jul 2013 · Current Topics in Membranes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases play a pivotal role in regulating many aspects of biological processes, including development, differentiation and cell death. Within the kinome, 48 kinases (~10%) are classified as pseudokinases owing to the fact that they lack at least one conserved catalytic residue in their kinase domain. However, emerging evidence suggest that some pseudokinases, even without the ability to phosphorylate substrates, are regulators of multiple cellular signalling pathways. Among these is KSR1 (kinase suppressor of Ras 1), which was initially identified as a novel kinase in the Ras/Raf pathway. Subsequent studies showed that KSR1 mainly functions as a platform to assemble different cellular components thereby facilitating signal transduction. In the present article, we discuss recent findings regarding KSR1, indicating that it has dual activity as an active kinase as well as a pseudokinase/scaffolding protein. Moreover, the biological functions of KSR1 in human disorders, notably in malignancies, are also reviewed.
    Preview · Article · Aug 2013 · Biochemical Society Transactions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinases (MAPKs; ERK1/2, p38, JNK and ERK5) have evolved to transduce environmental and developmental signals (growth factors, stress) into adaptive and programmed responses (differentiation, inflammation, apoptosis). Almost 20 years ago, it was discovered that MAPKs contain a docking site in the C-terminal lobe that binds a conserved 13-16 amino acid sequence known as the D- or KIM-motif (kinase interaction motif). Recent crystal structures of MAPK:KIM-peptide complexes are leading to a precise understanding of how KIM sequences contribute to MAPK selectivity. In addition, new crystal and especially NMR studies are revealing how residues outside the canonical KIM motif interact with specific MAPKs contribute further to MAPK selectivity and signaling pathway fidelity. In this review, we focus on these recent studies, with an emphasis on the use of NMR spectroscopy, isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS) to investigate these processes.
    Preview · Article · Dec 2013 · Protein Science
Show more