Article

Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually-impaired subjects.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... A total of 32 pairs of Braille characters (chosen from all of the letters of the alphabet, half of which were the same) and 32 pairs of either parallel or shifted positioned rectangles were presented pseudorandomly alternating with 32 simple movement trials, with a constraint of no more than three consecutive trials of the same type in a row. The functional data were obtained using an MRI-compatible Braille Character Stimulator, fully computer-controlled, phneumatically driven, and capable of delivery up to three standard Braille characters simultaneously (2 × 3, Marburg Medium) with addition of delivery also diacritics and meaningless characters i.e., rectangles (for detailes see: Debowska et al., 2013). The stimulator was placed on the subject's thigh, so the arm laid naturally along the body and the "reading" finger was positioned as when reading regular text. ...
... Since the whole-brain analysis did not reveal functional changes within the secondary somatosensory cortex, we decided to conduct additional ROI analyses. Two ROI's were created, for each left and right SII, using group data from the Braille discrimination task > finger movement contrast from both sessions ( Figure 4A) and coordinates from our previous study ( Figure 4B) revealed by the Braille discrimination task > rest comparison (Debowska et al., 2013). Parameter estimates for Braille and rectangles conditions were calculated individually within a spherical region-of-interest with a diameter of 6 mm. ...
Article
Full-text available
Neuroplastic changes induced by sensory learning have been recognized within the cortices of specific modalities as well as within higher ordered multimodal areas. The interplay between these areas is not fully understood, particularly in the case of somatosensory learning. Here we examined functional and structural changes induced by short-term tactile training based of Braille reading, a task that requires both significant tactile expertise and mapping of tactile input onto multimodal representations. Subjects with normal vision were trained for 3 weeks to read Braille exclusively by touch and scanned before and after training, while performing a same-different discrimination task on Braille characters and meaningless characters. Functional and diffusion-weighted magnetic resonance imaging sequences were used to assess resulting changes. The strongest training-induced effect was found in the primary somatosensory cortex (SI), where we observed bilateral augmentation in activity accompanied by an increase in fractional anisotropy (FA) within the contralateral SI. Increases of white matter fractional anisotropy were also observed in the secondary somatosensory area (SII) and the thalamus. Outside of somatosensory system, changes in both structure and function were found in i.e., the fusiform gyrus, the medial frontal gyri and the inferior parietal lobule. Our results provide evidence for functional remodeling of the somatosensory pathway and higher ordered multimodal brain areas occurring as a result of short-lasting tactile learning, and add to them a novel picture of extensive white matter plasticity.
... 37,132 Pneumatic actuation was adopted in Belforte and Cula, 7 Hidler et al., 51 IEC-60601-2-33-1, 56 Ikeda et al., 57 Suminski et al., 113 Trees et al., 118 Yang et al., 128 Yap et al., 129 Yu et al. 131,132 Interestingly, pneumatic actuation was used to realize tactile stimulators. 18,22,41,45,89 Hydraulic actuation was used in Gassert et al., 34 Jarrahi et al., 67 and Yu et al. 131 In Jarrahi et al. 67 hydraulic transmission was used to stimulate visceral organs and cavities. A different use of hydraulic system was proposed in Frank and Greenlee 28 and Lindstedt et al. 81 where water was used to deliver warm and cold stimuli, and not as a mechanical actuation method. ...
... 109 Some authors also estimate the noise at specific frequencies with an RF noise test, to assess the presence of specific frequencies in which abnormal absorption of RF signal is detected. 18,24,58,94,104,120 Neuner et al. 94 measured the noise without and with the device in operation: data from both noise measurements were then transformed to z-scores and noise distribution properties were compared by means of a quantile-quantile plot. A high correlation coefficient indicates that the system has no influence on the MR signal. ...
Article
Functional Magnetic Resonance Imaging (fMRI) is at present one of the most used methodologies for functional brain exploration, both in clinical and research settings. fMRI can noninvasively measure neural activity by using specific experimental paradigms. Often, these paradigms require the stimulation of the subject to perform sensorimotor tasks: in the past, the stimuli have been administered manually for investigating fundamental aspects of tactile perception and somatosensory processing. Nowadays, the use of mechatronic devices to stimulate the subject during fMRI studies is growing, also to assure reproducibility, control, and monitoring of task performances. For these reasons, researchers are interested in designing interfaces to be used inside the MRI environment during fMRI studies. For the design of every new device safety and compatibility constraints, imposed by the presence of high static magnetic field, switching magnetic gradients and radiofrequency electromagnetic pulses, must be satisfied. Moreover, it should be considered that functional imaging sequences are even more sensitive to perturbations of the magnetic field than MRI standard diagnostic sequences. Despite several existing devices for use in fMRI studies, an extensive review is still lacking. Our survey aims to introduce into the challenges imposed on the development of fMRI-compatible devices. The current state of the art of compatible devices in fMRI will be presented, pointing out the functionalities and peculiarities of various kinds of device. A particular emphasis will be placed on the tests for the evaluation of fMRI compatibility. This review will be useful both for designers of devices to be used in fMRI studies and for neuroscientists that are having to design fMRI experimental paradigm, and therefore require an overview of existing instruments, but also a knowledge of the benefits and criticism arising from their use.
... Additionally, in developing countries, it is difficult to manage a sufficient number of computers for VIS in blind schools due to its' high cost. Debowskaa, Wolakb, Soluchc, Orzechowskid, and Kossut (2013) illustrated the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS). This simulator is able to produce a precise and stable delivery of standardized Braille characters with high temporal resolution (Debowskaa et al., 2013). ...
... Debowskaa, Wolakb, Soluchc, Orzechowskid, and Kossut (2013) illustrated the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS). This simulator is able to produce a precise and stable delivery of standardized Braille characters with high temporal resolution (Debowskaa et al., 2013). Lécuyer, Mobuchon, and Christine (2003) studied and introduced a multimodal system HOMERE that is dedicated to those who are VI to explore and navigate virtual environments by providing the user with different sensations (Lécuyer et al., 2003). ...
Article
Full-text available
Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, “mBRAILLE”, for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.
... Auditory stimuli were presented via noise-attenuating headphones (NordicNeuroLab), visual stimuli were displayed on an LCD monitor, while tactile stimuli via NeuroDevice Tacti TM Braille display ( Debowska et al., 2013 ). Real words were balanced between conditions in the number of adjectives, verbs and nouns of similar frequency ( Fiebach et al., 2002 ). ...
Article
Full-text available
All writing systems represent units of spoken language. Studies on the neural correlates of reading in different languages show that this skill relies on access to brain areas dedicated to speech processing. Speech-reading convergence onto a common perisylvian network is therefore considered universal among different writing systems. Using fMRI, we test whether this holds true also for tactile Braille reading in the blind. The neural networks for Braille and visual reading overlapped in the left ventral occipitotemporal (vOT) cortex. Even though we showed similar perisylvian specialization for speech in both groups, blind subjects did not engage this speech system for reading. In contrast to the sighted, speech-reading convergence in the blind was absent in the perisylvian network. Instead, the blind engaged vOT not only in reading but also in speech processing. The involvement of the vOT in speech processing and its engagement in reading in the blind suggests that vOT is included in a modality independent language network in the blind, also evidenced by functional connectivity results. The analysis of individual speech-reading convergence suggests that there may be segregated neuronal populations in the vOT for speech processing and reading in the blind.
... This is a device made to localize brain sensomotoric areas. Originally this device was used as a simulator of Braille characters imaged on a tactile pin matrix [Dębowska et al. 2012]. Tactile pins move up and down arranged in a 6×4 matrix. ...
Conference Paper
Full-text available
The research goal is to explore the relationship between eye tracking measures and a tactile version of the n-back task. The n-back task is often used to evoke cognitive load, however this is the first study that incorporates tactile stimulus as input. The study follows a within-subject design with easy and difficult experimental conditions. In the tactile n-back task, each participant will be asked to identify the number of pins felt under the fingertips. In the easy condition, each participant will then be asked to respond if a number shown on the computer screen is congruent with the number of recognized pins. In the difficult condition, each participant will be asked to refer to the pin number in the current trial and the previous trial. Microsaccades and pupil dilation will be recorded during the top-down process of performing the n-back task.
... All stimuli were presented using Presentation software (https://www.neurobs.com/). Tactile stimuli were displayed on the BraillePen 12 Touch (www.harpo.com.pl) in the behavioral experiment and on an fMRI-compatible braille display (Neurodevice, Warsaw, Poland; see Debowska, Wolak, Soluch, Orzechowski, & Kossut, 2013) during the fMRI experiment. This braille display operates similarly to commercial braille devices, has pneumatically driven braille pins, and can display up to five braille characters that can be read in a manner identical to regular braille text, that is, by swiping ones' finger across them. ...
Article
The task-specific principle asserts that, following deafness or blindness, the deprived cortex is reorganized in a manner such that the task of a given area is preserved even though its input modality has been switched. Accordingly, tactile reading engages the ventral occipitotemporal cortex (vOT) in the blind in a similar way to regular reading in the sighted. Others, however, show that the vOT of the blind processes spoken sentence structure, which suggests that the task-specific principle might not apply to vOT. The strongest evidence for the vOT's engagement in sighted reading comes from orthographic repetition-suppression studies. Here, congenitally blind adults were tested in an fMRI repetition-suppression paradigm. Results reveal a double dissociation, with tactile orthographic priming in the vOT and auditory priming in general language areas. Reconciling our finding with other evidence, we propose that the vOT in the blind serves multiple functions, one of which, orthographic processing, overlaps with its function in the sighted.
... Left BA3 (somatosensory, postcentral gyrus) thickness (in SPSS) was positively correlated with duration of blindness, and of the subcortical structures, the left thalamus was significantly smaller in the blind group but the right entorhinal cortex (and parahippocampal gyrus) was larger and thicker and positively correlated with blindness duration. These results are consistent with Bhattacharjee and colleagues [19] who reported accelerated somatosensory processing in congenitally blind Braille readers, and with Debowska and colleagues [20] who found significant activations in several cortical areas, including bilateral primary and secondary somatosensory cortices during a Braille Character Stimulator task. Jahn and colleagues [21] reported imagined stance and locomotion to be associated with activation in the occipital visual areas, thalamus, parahippocampal gyrus, and somatosensory cortex. ...
Article
Full-text available
Previous neuroimaging studies have demonstrated structural brain alterations in blind subjects, but most have focused on primary open angle glaucoma or retinopathy of prematurity, used low-field scanners, a limited number of receive channels, or have presented uncorrected results. We recruited 10 blind and 10 age and sex-matched controls to undergo high-resolution MRI using a 3T scanner and a 32-channel receive coil. We evaluated whole-brain morphological differences between the groups as well as manual segmentation of regional hippocampal volumes. There were no hippocampal volume differences between the groups. Whole-brain morphometry showed white matter volume differences between blind and sighted groups including localised larger regions in the visual cortex (occipital gyral volume and thickness) among those with blindness early in life compared to those with blindness later in life. Hence, in our patients, blindness resulted in brain volumetric differences that depend upon duration of blindness.
... Performing the well-learnt discrimination task under stress resulted in higher activation of primary and secondary somatosensory cortex. These regions are involved in this discrimination also in no-stress conditions (Debowska et al., 2013). We interpret this heightened activation as a result of increased attentional effort, triggered by the frustrating experience of the previous part of the experiment. ...
Article
Full-text available
In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.
... As this can be made through a keyboard, it may also be used with an embossed monitor (Jimenes et al, 2009). Various tools using Braille were developed (Hughes et al, 2011;Jianga et al, 2002;Debowskaa et al, 2013). However, as those tools analyze the sites, they follow the certain rules. ...
Article
Full-text available
It is a major problem for visually impaired people to access to information readily. Although, there are a plenty of written sources, the number of recorded sources are limited. So how can we make visually impaired to use online educational material? In this study, it is aimed to develop a distance education portal that makes educational materials and sources easily accessible to visually impaired. It enables an easy access to a variety of education packages with different contents and durations. The distance education portal developed in this study is coded in PHP, and MySQL is used for the database. JAWS is used as the screen reading software. HTML pages are coded using HTML5 and CSS3 technologies, and are designed to be compatible with JAWS. Distance education portal for visual impaired is designed using new tools, and successful results are obtained with help of JAWS screen reading software. The portal will provide the visually impaired with many dynamic and interactive educational opportunities. Therefore, it would be reasonable to use the portal to offer all or part of any special or vocational education in varying content.
... signal differences below the baseline level. Furthermore, although not as common in the literature as contralateral activation changes, effects in ipsilateral postcentral regions have been reported before for tactile tasks, as for example by Debowska et al. (2013);van Ede et al. (2014), and Sathian et al. (2013). More specifically, studies focusing on macrospatial tasks, such as orientation and shape discrimination, showed activation within the right PoCS and the neighboring intraparietal sulcus, irrespective of the hand used for tactile exploration (Kitada et al. 2006;Stilla and Sathian 2008), the same is true for studies using microspatial discrimination tasks (Sathian et al. 2013). ...
Article
Full-text available
Perceived roughness is associated with a variety of physical factors and multiple peripheral afferent types. The current study investigated whether this complexity of the mapping between physical and perceptual space is reflected at the cortical level. In an integrative psychophysical and imaging approach, we used dot pattern stimuli for which previous studies reported a simple linear relationship of interdot spacing and perceived spatial density and a more complex function of perceived roughness. Thus, by using both a roughness and a spatial estimation task, the physical and perceived stimulus characteristics could be dissociated, with the spatial density task controlling for the processing of low-level sensory aspects. Multivoxel pattern analysis was used to investigate which brain regions hold information indicative of the level of the perceived texture characteristics. While information about differences in perceived roughness was primarily available in higher-order cortices, that is, the operculo-insular cortex and a ventral visual cortex region, information about perceived spatial density could already be derived from early somatosensory and visual regions. This result indicates that cortical processing reflects the different complexities of the evaluated haptic texture dimensions. Furthermore, this study is to our knowledge the first to show a contribution of the visual cortex to tactile roughness perception. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Article
Background Studying brain processes underlying tactile perception induced by natural-like stimulation is challenging yet crucial to closely match real-world situations. New Method We developed a computer-controlled pneumatic device that allows the delivery of complex airflow patterns on subject’s body, through a MR-compatible system fixed on an independent clippable mounting device. The intensity of stimulation as well as the timing of each of the four air channels are completely programmable and independent, allowing the precise control and modularity of the airflow delivery. Results An analysis of signal-to-noise ratio (SNR) measurement did not show any impact of the PAF device on anatomical or functional scan acquisitions. A psychophysical experiment was also performed on 24 volunteers to evaluate the perception of different airflow patterns delivered over the lower part of their face. It revealed that all participants were able to finely discriminate the direction of these leftward to rightward flow motions. The fMRI experiment, which consisted in presenting to 20 participants four different airflow patterns, shed light on the brain network associated with tactile motion perception. A multivariate analysis further showed a specific coding of the different patterns inside this tactile brain network including the primary and secondary somatosensory cortex Comparison with Existing Method(s) The Patterned Air-Flow (PAF) is an easy-to-set-up, portable, adaptable device, which can be spatially and temporally modulated to provide complex tactile stimuli. Conclusions This device will be useful to further explore complex dynamic touch exerted over various body parts and can also be combined with visual or auditory stimulation to study multisensory mechanisms.
Article
Full-text available
A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.
Article
As tecnologias de Interface Cérebro-Computador em conjunto com as Tecnologias da Informação e Comunicação estão se tornando uma nova maneira de interagir com o computador. Investigar as possibilidades de utilizá-las para traduzir estímulos táteis resultantes da utilização do Sistema Braille e estímulos motores resultantes da Língua dos Sinais (LIBRAS) para idiomas textuais comuns é o objetivo principal desse estudo. Com base em uma fundamentação teórica realizada a partir de uma contextualização sobre as tecnologias e as formas de comunicação, e a partir da idealização de dois projetos tecnológicos tradutores, foram realizadas buscas em repositórios de trabalhos acadêmicos e máquinas de procura genéricas, tendo como critério de busca palavras-chave derivadas da referida contextualização e das diretrizes para os projetos tecnológicos tradutores. Os resultados foram analisados em busca de trabalhos de mesmo tema que o elaborado nesse estudo, ou que ao menos possibilitem alguma verificação quanto à viabilidade. Após apresentação dos resultados, são elaboradas considerações interdisciplinares, objetivando uma dialética com pesquisadores das áreas de estudo envolvidas, também descrevendo alternativas em âmbito de considerações finais sobre um projeto tecnológico viável utilizando Eletromiografia para aperfeiçoamento de Tecnologia Assistiva utilizada por pessoas cegas na produção textual.
Article
Full-text available
As tecnologias de Interface Cérebro-Computador em conjunto com as Tecnologias da Informação e Comunicação estão se tornando uma nova maneira de interagir com o computador. Investigar as possibilidades de utilizá-las para traduzir estímulos táteis resultantes da utilização do Sistema Braille e estímulos motores resultantes da Língua dos Sinais (LIBRAS) para idiomas textuais comuns é o objetivo principal desse estudo. Com base em uma fundamentação teórica realizada a partir de uma contextualização sobre as tecnologias e as formas de comunicação, e a partir da idealização de dois projetos tecnológicos tradutores, foram realizadas buscas em repositórios de trabalhos acadêmicos e máquinas de procura genéricas, tendo como critério de busca palavras-chaves derivadas da referida contextualização e das diretrizes para os projetos tecnológicos tradutores. Os resultados foram analisados em busca de trabalhos de mesmo tema que o elaborado nesse estudo, ou que ao menos possibilitem alguma verificação quanto a viabilidade. Após apresentação dos resultados são elaboradas considerações interdisciplinares, objetivando uma dialética com pesquisadores das áreas de estudo envolvidas, também descrevendo alternativa, em âmbito de considerações finais, sobre um projeto tecnológico viável utilizando Eletromiografia para aperfeiçoamento de Tecnologia Assistiva utilizada por pessoas cegas na produção textual. Brain-Computer Interface technologies, in conjunction with Information and Communication Technologies, are becoming a new way of interacting with computers. The main objective of this study is to investigate the possibilities of using such technologies to translate both tactile stimuli resulting from the use of Braille System and motor stimuli resulting from the use of Sign Language to common textual languages. Based on a theoretical foundation derived from the contextualization of technologies and forms of communication, and also from the idealization of two technological translating systems, a research was carried out using repositories of academic studies, as well as generic search engines, using keywords derived from the aforementioned contextualization as well as the guidelines for the translating systems as criteria. The results were analyzed in pursuit of studies that deal with same subject as the present paper, or which at least allow to verify the viability of this study. After the presentation of results, interdisciplinary considerations are elaborated, aiming a dialectic with researchers of the fields of study involved, also describing in the final considerations alternatives for a feasible technological project using Electromyography to improve Assistive Technology used by blind people in their written production.
Article
Full-text available
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Article
Full-text available
Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. The anatomic connectivity of the somatosensory system supports the simultaneous participation of widely separated cortical areas in the early processing of sensory input. We recorded evoked neuromagnetic responses noninvasively from human primary (SI) and secondary (SII) somatosensory cortices to unilateral median nerve stimulation. Brief current pulses were applied repetitively to the median nerve at the wrist at 2 Hz for 800-1,500 trials. A single pulse was omitted from the train at random intervals (15% of omissions). We observed synchronized neuronal population activity in contralateral SII area 20-30 ms after stimulation, coincident in time with the first responses generated in SI. Both contra- and ipsilateral SII areas showed prominent activity at 50-60 ms with an average delay of 13 ms for ipsilateral compared with contralateral responses. The refractory behavior of the early SII responses to the omissions differed from those observed at approximately 100 ms, indicative of distinct neuronal assemblies responding at each latency. These results indicate that SII and/or associated cortices in parietal operculum, often viewed as higher-order processing areas for somatosensory perception, are coactivated with SI during the early processing of intermittent somatosensory input.
Article
Full-text available
Presenting various stimuli in an MRI scanner can be difficult due to the high magnetic field associated with the scanner. Mechanical vibration stimuli are difficult to deliver to subjects in the MRI environment because most vibration devices contain internal circuitry that can adversely interact with the high magnetic field. Piezoelectric ceramics can provide a solution to this problem since they do not require any internal circuitry to vibrate. Piezoceramics are nonmagnetic and they can be made to vibrate if supplied with an alternating current from a straight wire. We designed a piezoceramic vibrotactile stimulator that is safe and effective in functional MRI experiments. The stimulator was tested in an fMRI experiment at 35 and 150 Hz. The results yielded activation sites in the primary sensory cortex and Brodmann area 40 at both frequencies.
Article
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Article
We investigated to which extent the discrimination of tactile patterns and vibrotactile frequencies share common cortical areas. An adaptation paradigm has been used to identify cortical areas specific for processing particular features of tactile stimuli. Healthy right-handed subjects performed a delayed-match-to-sample (DMTS) task discriminating between pairs of tactile patterns or vibrotactile frequencies in separate functional MRI sessions. The tactile stimuli were presented to the right middle fingertip sequentially with a 5.5 s delay. Regions of interest (ROIs) were defined by cortical areas commonly activated in both tasks and those that showed differential activation between both tasks. Results showed recruitment of many common brain regions along the sensory motor pathway (such as bilateral somatosensory, premotor areas, and anterior insula) in both tasks. Three cortical areas, the right intraparietal sulcus (IPS), supramarginal gyrus (SMG)/parietal operculum (PO), and PO, were significantly more activated during the pattern than in the frequency task. Further BOLD time course analysis was performed in the ROIs. Significant BOLD adaptation was found in bilateral IPS, right anterior insula, and SMG/PO in the pattern task, whereas there was no significant BOLD adaptation found in the frequency task. In addition, the right hemisphere was found to be more dominant in the pattern than in the frequency task, which could be attributed to the differences between spatial (pattern) and temporal (frequency) processing. From the different spatio-temporal characteristics of BOLD activation in the pattern and frequency tasks, we concluded that different neuronal mechanisms are underlying the tactile spatial and temporal processing.
Article
Response reliability is complementary to more conventional measurements of response amplitudes, and can reveal phenomena that response amplitudes do not. Here we review studies that measured reliability of cortical activity within or between human subjects in response to naturalistic stimulation (e.g. free viewing of movies). Despite the seemingly uncontrolled nature of the task, some of these complex stimuli evoke highly reliable, selective and time-locked activity in many brain areas, including some regions that show little response modulation in most conventional experimental protocols. This activity provides an opportunity to address novel questions concerning natural vision, temporal scale of processing, memory and the neural basis of inter-group differences.
Article
We studied the organization of the somatosensory cortex in proficient Braille readers, recording somatosensory evoked potentials (SEPs) in 10 subjects and using transcranial magnetic stimulation (TMS) in five subjects, and compared the results with those of 15 control subjects. Somatosensory evoked potentials were elicited by a focal electrical stimulus to the tip of the index finger and recorded from a contralateral 4×4 grid of scalp electrodes centred around C3' or C4'. Transcranial magnetic stimulation, with an 8-shaped coil centred over the same scalp positions, was delivered simultaneously with, and at different intervals after, the finger stimulus. The results of the right index (reading) finger in Braille readers were compared with those of their left index (non-reading) finger and of the right and left index fingers of the control subjects. The scalp areas from which we recorded N20 and P22 components of the SEP with an amplitude of at least 70% of the maximal amplitude recorded in each trial were significantly larger in SEPs evoked from the reading fingers. Detection of the stimulus applied to the reading finger was blocked by TMS delivered over a larger contralateral scalp area and during a longer time window after the stimulus. These experiments suggest that reading Braille is associated with expansion of the sensorimotor cortical representation of the reading finger.
Article
Neuroimaging techniques have provided ample evidence for multisensory integration in humans. However, it is not clear whether this integration occurs at the neuronal level or whether it reflects areal convergence without such integration. To examine this issue as regards visuo-tactile object integration we used the repetition suppression effect, also known as the fMRI-based adaptation paradigm (fMR-A). Under some assumptions, fMR-A can tag specific neuronal populations within an area and investigate their characteristics. This technique has been used extensively in unisensory studies. Here we applied it for the first time to study multisensory integration and identified a network of occipital (LOtv and calcarine sulcus), parietal (aIPS), and prefrontal (precentral sulcus and the insula) areas all showing a clear crossmodal repetition suppression effect. These results provide a crucial first insight into the neuronal basis of visuo-haptic integration of objects in humans and highlight the power of using fMR-A to study multisensory integration using non-invasinve neuroimaging techniques. Electronic supplementary material The online version of this article (doi:10.1007/s00221-009-1949-4) contains supplementary material, which is available to authorized users.
Article
Vibrotactile stimulation has been used successfully to activate the human somatosensory pathway in functional magnetic resonance imaging (fMRI) experiments. The design and characterization of these devices are of particular interest in frequency discrimination tasks and investigations of the somatopic organization of sensory areas. However, few have investigated the utility of vibrotactile stimulation in a clinical context. We have previously demonstrated that vibrotactile stimulation can provide robust activations in areas targeted in stereotactic functional neurosurgical procedures used for tumour resection (i.e.: primary and secondary somatosensory areas) and subcortical targets for thalamic pain and movement disorders (i.e.: sensory thalamus). The main contribution of this manuscript is the presentation of the design, materials, construction, and validation of a novel vibrotactile stimulator intended for clinical use. The thalamic activations are also compared to a digital atlas in order to evaluate anatomical localization. The proposed stimulator was constructed entirely from non-ferromagnetic parts, uses compressed air to deliver stimulation using computer control, and stimulates the entirety of the hand and fingers to ensure robust somatosensory activations. In addition, this stimulator is constructed entirely from "off-the-shelf" parts and would be easily replicated due to the simplicity of design and the relatively small expense of the parts required. The device was tested by stimulating the right hand of 10 normal controls (5 females, 5 males, all right handed; age range: 25-42 years, mean: 30.9 years, standard deviation: 5.2 years) during an fMRI experiment. The results demonstrate significant single subject activations of primary and secondary somatosensory cortices and of the sensory thalamus.
Article
Thalamic and corticocortical connections of the second somatic sensory area (SII) in the mouse cerebral cortex were investigated by means of the retrograde transport of horseradish peroxidase. Focal injections of the enzyme were made in physiologically determined locations within the parietal cortex. Results show that SII receives substantial inputs from topographically appropriate regions within the ipsilateral ventrobasal nucleus and from the ipsilateral posterior group. The limb representation, which was previously found to be responsive to auditory stimulation, received inputs also from the medial division of the medial geniculate body. The SII face representation, which is largely unresponsive to auditory stimuli, received little or no input from the medial geniculate body. SII injections yielded retrograde labeling in the topographically appropriate region in the first somatic sensory area (SI), and SI injections retrogradely labeled cells in SII in a pattern consistent with previous electrophysiological maps. Homotypical regions within SI and SII therefore appear to be reciprocally interconnected. SII also receives inputs from the ipsilateral motor cortex and from contralateral SI and SII. Finally, injections into the SI paw but not face regions yielded retrograde labeling in the thalamic ventrolateral nucleus. Thus, the distal limb representations in SI and SII each receive inputs from a third major relay nucleus (i.e., medial geniculate to SII, ventrolateral nucleus to SI) whereas the face representations do not. These results indicate a close functional interrelationship between homotypical areas in SI and SII, though the two areas differ in several important respects. It is proposed that SII in mice may complement the function of SI by helping to define the overall sensory context in which detailed tactile discriminations are made.
Article
Sensory functional MRI was performed in seven normal volunteers at 1. 5 T using a vibratory stimulus applied to the pad of the first finger of the left hand. The data was normalized to a standard atlas, and individual and group statistical parametric maps were computed. Robust bilateral activation was demonstrated in the secondary somatosensory cortex (SII), indicating a bilateral representation of SII in humans. Greater maxima and activation volumes were achieved in contralateral SII as compared to SI. Sensory fMRI can provide a sensitive assay for probing the nature and function of SII in vivo.
Article
We studied the interaction between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII by recording somatosensory evoked magnetic fields (SEFs) from 8 healthy subjects with a 122-channel whole-scalp SQUID magnetometer. Right (R) and left (L) median nerves were electrically stimulated at the wrists at intensities exceeding the motor threshold. In each stimulus sequence, the four equiprobable pairs (L-L, R-R, L-R, R-L) were presented in a random order once every 2 s, with a 300-ms interstimulus interval within the pair. The responses were modelled with a four-dipole model, with current dipoles located in the SI and SII cortices of both hemispheres. The SII responses peaked around 85-120 ms and responses to the 1st (2nd) stimulus on the pair were on average 2 (12) ms earlier and about 3 (2.5) times stronger for contralateral than ipsilateral stimuli. Independently of the condition, the 2nd response always peaked later than the 1st; the mean delay was 16 ms. The responses to the 2nd stimulus depended only slightly on the type of the 1st: the latency increased more and the amplitude decreased less after different than identical 1st stimuli. These results suggest that neuronal activations due to contra- and ipsilateral stimuli overlap strongly in the human SII cortex.
Article
The invariant properties of human cortical neurons cannot be studied directly by fMRI due to its limited spatial resolution. One voxel obtained from a fMRI scan contains several hundred thousands neurons. Therefore, the fMRI signal may average out a heterogeneous group of highly selective neurons. Here, we present a novel experimental paradigm for fMRI, functional magnetic resonance-adaptation (fMR-A), that enables to tag specific neuronal populations within an area and investigate their functional properties. This approach contrasts with conventional mapping methods that measure the averaged activity of a region. The application of fMR-A to study the functional properties of cortical neurons proceeds in two stages: First, the neuronal population is adapted by repeated presentation of a single stimulus. Second, some property of the stimulus is varied and the recovery from adaptation is assessed. If the signal remains adapted, it will indicate that the neurons are invariant to that attribute. However, if the fMRI signal will recover from the adapted state it would imply that the neurons are sensitive to the property that was varied. Here, an application of fMR-A for studying the invariant properties of high-order object areas (lateral occipital complex--LOC) to changes in object size, position, illumination and rotation is presented. The results show that LOC is less sensitive to changes in object size and position compared to changes of illumination and viewpoint. fMR-A can be extended to other neuronal systems in which adaptation is manifested and can be used with event-related paradigms as well. By manipulating experimental parameters and testing recovery from adaptation it should be possible to gain insight into the functional properties of cortical neurons which are beyond the spatial resolution limits imposed by conventional fMRI.
Article
Cortical signal intensity changes due to brief (1 s) innocuous electrical stimuli applied to the second and fifth finger of the right hand were measured by means of fMRI at 1.5 T. The activation pattern in this event-related fMRI approach closely resembled that obtained in recent block-design studies. Activations were found in contralateral primary (SI) and bilaterally in secondary (SII) somato-sensory cortex as well as in posterior parietal cortex, insula, and supplementary motor area (SMA). In SI, the somatotopic organization of the hand area is demonstrated, more clearly to be seen in area 3b than in area 1 and 2. In conclusion, the feasibility to employ event-related somatosensory stimulation paradigms in fMRI studies is demonstrated.
Article
The primary visual cortex (V1) in congenitally blind humans has been shown to be involved in tactile discrimination tasks, indicating that there is a shift in function of this area of cortex, but the age dependency of the reorganization is not fully known. To investigate the reorganized network, we measured the change of regional cerebral blood flow using 3.0 Tesla functional MRI during passive tactile tasks performed by 15 blind and 8 sighted subjects. There was increased activity in the postcentral gyrus to posterior parietal cortex and decreased activity in the secondary somatosensory area in blind compared with sighted subjects during a tactile discrimination task. This suggests that there is a greater demand for shape discrimination processing in blind subjects. Blind subjects, irrespective of the age at onset of blindness, exhibited higher activity in the visual association cortex than did sighted subjects. V1 was activated in blind subjects who lost their sight before 16 years of age, whereas it was suppressed in blind subjects who lost their sight after 16 years of age during a tactile discrimination task. This suggests that the first 16 years of life represent a critical period for a functional shift of V1 from processing visual stimuli to processing tactile stimuli. Because of the age-dependency, V1 is unlikely to be the "entry node" of the cortex for the redirection of tactile signals into visual cortices after blinding. Instead, the visual association cortex may mediate the circuitry by which V1 is activated during tactile stimulation.
Article
A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition.
Article
Functional magnetic resonance imaging (fMRI) experiments on tactile perception are difficult to perform because the special characteristics of an MRI environment restrict the experimental setup. Although recently developed actuators have made it possible to apply vibrotactile stimuli to the skin during an fMRI experiment, the projection of spatially extended patterns is still precluded. In order to examine the processing of tactile perception, a new pneumatically-driven tactile device (PTD) has been built. This device is capable of stimulating the skin, using arbitrary time sequences that consist of 2D tactile images up to 64 pixels. It is shown how the device is implemented in a 2 T fMRI environment, and show that it operates without generating artifacts. Dedicated software allows the generation of complex paradigms and provides a user-friendly interface to other brain mapping systems, as well as automated operation. This paper describes the PTD elucidates its features, and demonstrate its reliability by reporting results from an fMRI study based on an event-related protocol involving six subjects.
Article
The traditional view that the cerebellum is involved only in the control of movements has been changed recently. It has been suggested that the human cerebellum is involved in cognition and language. Likewise, besides cortical activity in sensorimotor and visual areas, an increased global activation of the cerebellum has been revealed during Braille reading in blind subjects. Our purpose was to investigate whether there is cerebellar activation during Braille reading by blind subjects other than sensorimotor activation related to finger movements. Early blind and normal sighted subjects were studied with functional magnetic resonance imaging (fMRI) during Braille reading, tactile discrimination of nonsense dots, dots forming symbols, and finger tapping. The experiments were done in block design. Echo planar imaging sequences were carried out on a 1.5-T MR scanner. All blind individuals reading Braille showed robust activation of the posterior and lateral aspects of cerebellar hemispheral lobules Crus I bilaterally but more predominately on the right side. Additionally, activation was present in the medial cerebellum within lobules IV, V, and VIIIA, predominantly on the right. Discriminating nonsense dots did not reveal any activation of Crus I, but did reveal activation within the medial part of lobules IV, V, and VIIIA, predominately on the right. Analysis of sighted subjects during reading of printed text revealed activation of the posterolateral cerebellar hemisphere in Crus I bilaterally, predominantly on the right. Tactile analysis of dots representing symbols revealed an activation in lobules IV and VIII and in right Crus II but not in Crus I. In conclusion, parts of cerebellar activation during Braille reading in blind subjects (i.e., within lobules IV, V, and VIII) overlap with the known hand representation within the cerebellum and are likely related to the sensorimotor part of the task. Cerebellar activation during Braille reading within bilateral Crus I may be due to language processes or inner speech similar to those found during text reading in normal sighted subjects. Object recognition did not account for Crus I activation.
Article
The purpose of this study was to investigate the fMRI response of the sensorimotor cortex to a vibration paradigm produced by a novel vibrotactile stimulator. Fifteen contiguous slices covering the sensorimotor cortex parallel to the anterior (AC) and posterior commissure (PC) line were obtained with echoplanar magnetic resonance imaging at 1.5T. Cortical activity in ten healthy subjects (20-45 years) was investigated during vibration (50 Hz) of the palm of the right hand and compared to a finger-to-thumb tapping paradigm. For the vibration paradigm a mechanically driven vibration head was mounted on the palm of the right hand. The new vibration device produces vibration frequencies (1-130 Hz) and displacement amplitudes (0.5-4 mm) suitable to elicit the tonic vibratory reflex. The fMRI measurement during vibratory stimulation revealed activation in the pre- and postcentral gyrus in all subjects. These activations were comparable to the finger-to-thumb tapping paradigm. The advantages of the new MR compatible vibration device include effective transmission of the stimulus and controlled vibration frequencies and intensities. These preliminary fMRI results indicate that vibration can be an alternative paradigm for the evaluation of sensory and motor functions in patients unable to perform active motor paradigms.
Article
Unilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts. We hypothesized that fMRI in humans should reflect the functional connectivity of somatosensory cortex as predicted by animal studies. We show that both unilateral finger and lip stimulations activate contra- and ipsilateral SI and SII cortices with high detection frequency. Correlations of BOLD-signals to the applied hemodynamic reference function were significantly higher in contralateral as compared to ipsilateral SI and SII cortices for both finger and lip stimulation, reflecting strong contribution of contralateral thalamocortical input. Furthermore, BOLD-signal correlations were higher in SI than in SII activations on the contralateral but not on the ipsilateral side. While these asymmetries within and across hemispheres were consistent for finger and lip stimulations, indicating analogous underlying organizing principles, they were less prominent for lip stimulation. Somatotopic organization was detected in SI but not in SII representations of fingers and lips. These results qualitatively and quantitatively support the prevalent concepts of anatomical and functional connectivity in the somatosensory system and therefore may allow interpretation of sensory evoked fMRI signals in terms of normal human brain function. Thus, the assessment of human somatosensory function with fMRI may permit in the future investigations of pathological conditions.