ArticlePDF Available

Vespid Wasps eat pollen (Hymenoptera: Vespidae)

Authors:
Article

Vespid Wasps eat pollen (Hymenoptera: Vespidae)

August 22, l99l
JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY
64(2),
1991,
pp. 127-130
Vespid Wasps
Eat Pollen (Hymenoptera:
Vespidae)
Jeues H. HrrNr, Prccy A. BnowN, KAnnN M. Seco, AND
JnxNren A. Knnxrn
Department of Biology, University of Missouri-St. Louis,
St.
Louis. Missoui 63121
ABsrRAcr: Counts of pollen grains from the digestive tracts of 23 species
of wasps
and
bees
reveal that both solitary and social taxa in the Vespidae
in some cases
ingest pollen
at levels
equal
to those
of some
bees.
This finding shows,
for the first time, that these adult
wasps can derive some
protein nourishment
from pollen.
Pollens of different plant taxa are known to contain from 5o/o to 400/o
protein
(Todd and Bretherick, 1942; Grogan and Hunt, 1979) and can be a source
of
protein nourishment for insects.
Pollen also
has
enzymatic
activity adequate
and
appropriate
for its own protein digestion
in vivo (Grogan
and Hunt, 1979).
Most
bees
provision their larvae with pollen, and adult bees
nourish themselves
on
pollen and nectar
mixtures. This source of proteinaceous
nourishment for adult
bees
has been
hypothesized to be fundamental to the many evolutions of social
behavior in Apoidea (Hunt, 1982). Observations
of wasps foraging at flowers
raised
the question in our minds as to whether wasps might not also, in some
cases,
ingest
pollen in quantities
adequate
for adult proteinaceous
nourishment.
Materials and Methods
Pinned, dried specimens
of 23 species
of wasps and bees
were selected
from
the collection of the Museum of Natural History at the University of Missouri-
St.
Louis. To remove any externally
adhering
pollen, the specimens
were relaxed,
removed from their pins, and immersed
individually in detergent
solution in an
ultrasonic
cleaner.
(Though
the specimens
used
in this study
were not themselves
visually examined for externally adhering
pollen that may have remained after
this cleaning, examinations of specimens
of the same
taxa treated in the same
way revealed effectiveness
of the cleaning technique.)
After drying in a low tem-
perature
oven,
the gasters
of three
specimens
of each
taxon were
then individually
removed (except
Metapolybia
aztecoides,
for which pairs of specimens
were used
to compensate
for its small size).
Each
gaster
(except
two together
for M. aztecoid-
es)
was crushed
in a test tube,
to which was added2.5 ml of an 8:1 mixture of
acetic
anhydride and concentrated
HrSOo before
placing in a boiling water bath
for 5 min. The test tubes
were removed from the boiling water and cooled.
The
contents
were then strained into a centrifuge
tube through brass
screen
to remove
remaining cuticle fragments, centrifuged, and the solution was pipetted off. An
ethanol
wash, followed by centrifugation,
was
followed by two water washes and
centrifugation. After the final centrifugation, two samples
were taken from each
centrifuge tube using small cubes
of glycerine
jelly. The sample
was placed
on a
microscope slide on a warmer to melt the jelly, which was then covered
with a
cover glass
and sealed.
The number of pollen grains on each
slide was counted
using a hand counter
and compound
microscope.
Further description
of the pollen
Accepted for publication 21 February 1991.
r28 JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY
Table l. Total counts of the numbers of pollen grains in samples
from acetolyzed
gasters
of wasps
and bees.
The data comprise two samples
from each of three specimens for each taxon except
Me-
tapolybia aztecoides
(see
text).
Taxon Specimen I Specimen
2Specimen 3
Scolioidea: Myzininae
Myzinum 5
-cinctum
males
Myzinum 5
-
cinctum
females
Pompilidae
Pompilus scelestus
Nyssonidae
Microbembix monodonta
Sphecidae
C halyb i
o
n cal ifor
nicum
S celip hro n caeme ntarium
Sphex ichneumoneus
Vespidae: Eumeninae
Eumenes
fraternus
Monobia quadridens
Vespidae:
Masarinae
P
seudomas aris vesp
oides
P seudo mas aris edwardei
Vespidae: Polistinae
Polistes
fuscatus
Polistes
instabilis
Polistes
metricus
males
Brachygastra
mellifica
Metapolybia aztec
oides
P
arac hart e
r
gus
fr at e
r
nus
Vespidae: Vespinae
D
o lic hov e s
pul
a macul ala workers
Vespula
maculifrons workers
Ve
s
pul
a maculifr o ns males
Apoidea: Halictidae
Agapostemon virescens
Apoidea: Colletidae
Colletes inaequalis
Apoidea: Megachilidae
Megachile brevis
Apoidea: Apidae
Apis mellifera workers
B
ombus
pe
nnsylvanrczs
workers
34
0
I
3
l5
172
8900 9840
9t20 18,080
649 924
4470 11,030
19,300 9300
0
0
2
I
l6
0
I
I
I
86
42
4
3
l9
0
8
U
6
I
2
47
I
15
4
0
I
6
I
5
2
2810 4630
494 293
14 33
lll t4l
762 11,440
r64t 27,400
19 16
2r0
624
2l
22
01
0
I
9
0
0
I
I
0
I
0
0
J
0
6
0
30
62
15 15
26
l0
02
54 15
00
0l
59
150 1273 t4t3
284 235
73 1090
640 587
51
r693ll0
ll 2l
23 63
VOLUME 64, NUMBER 2 T29
acetolysis
technique and a recipe for the glycerine
jelly are given in Lewis et al.,
1
983.
Results
and Discussion
Counts of the pollen grains
on each slide are reported
in Table 1. The number
of pollen grains
on the slides
is less
than the total that would have been
present
in each
gaster,
but the relative differences
revealed
by the consistent application
of the standard sampling
technique should accurately
reflect real differences.
Several
patterns
are apparent.
Highest counts, by far, are from the two species
of masarines. These wasps
are known to transport pollen in their crops as pro-
visions for their larvae, and both flower preferenda
and external adaptive mod-
ifications for pollen gathering
are well documented
(Richards, 1962).
The high
counts
from the Masarinae
were
thus expected.
Moderate to high counts are
found
in all bee taxa. Among these,
highest counts occur in the short-tongued
bees
(Agapostemon,
Colletes),
which suggests an inverse correlation with the known
relative lower concentration of amino acids in the nectar of flowers visited by
short-tongued bees
(Baker and Baker, 1975),
though the small sample size calls
for caution
in this conclusion.
Differences between
individuals, most conspicuous
rn Agapostemon virescens,
reflect expected
vagaries in both foraging and specimen
collection.
Among the non-masarine wasps, most taxa have counts so low as to
confirm the conventional
wisdom that wasps
do not ingest
pollen.
However, some
individuals in several species of Vespidae
(Monobia quadridens,
Polistes
fuscatus,
P. metricas males, Brachygastra mellifica, Dolichovespula maculata) have pollen
counts that reach
the lower range
of counts
found in some of the bees.
This finding
indicates that some
individuals in the
Vespidae, other than the obvious
Masarinae,
ingest
pollen in at least low to moderate
quantities.
The ingestion
of pollen would
provide proteinaceous
nourishment to those
wasps,
though
the
present
data cannot
indicate the percent
of their total nourishment.
The occurrence of pollen in the digestive tracts of species
in the Eumeninae,
Polistinae,
and Vespinae as well as the Masarinae, together
with the absence of
significant
pollen counts
in all but one of the non-vespid wasps
sampled,
suggests
that ingesting
pollen (probably
in suspension
in nectar) may be a basic behavioral
trait of the Vespidae.
If so, it is not possible at this time to distinguish two
alternative
possible
explanations:
that the vespids in our sample
are more likely
than the other wasps
to have actively ingested
pollen, or that the vespids in our
sample
visited flowers
with pollen more likely to have been
passively
ingested.
In either event,
it is interesting
to speculate that pollen ingestion,
at low to mod-
erate
levels, may have
characterized
Vespidae
at an early
period of their evolution
before the divergence
of Masarinae from the other subfamilies.
Acknowledgments
We thank Roy R. Snelling for donating specimens
of Masarinae from the col-
lections
of the Los Angeles
County Museum; Walter H. Lewis, who taught JHH
the pollen acetolysis technique; and James
C. Trager,
two anonymous reviewers,
and especially
James
B. Whitfield for manuscript review. This research was sup-
ported
in part by NSF grant
BSR 8805971.
130 JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY
Literature Cited
Baker.
H. G.. and I. Baker. 1975. Studies
of nectar-constitution
and pollinator-plant
coevolution.
In L. E. Gilbert and P. H. Raven (eds.),
Coevolution of Animals and Plants,
pp. 100-140.
University of Texas
Press,
Austin. 246 pp.
Grogan,
D. E., and
J. H. Hunt. 1979. Pollen
proteases:
their potential
role in insect
digestion.
Insect
Biochem. 9:309-313.
Hunt, J. H. 1982. Trophallaxis and the evolution of eusocial
Hymenoptera.
In M. D. Breed, C. D.
Michener, and H. E. Evans
(eds.),
The Biology of Social
Insects,
pp.20l-205. Westview
Press,
Boulder,
CO. 419
pp.
Lewis, W. H., P. Vinay, and V. E. Znnger. 1983. Airborne and Allergenic
Pollen of North America.
Johns
Hopkins Univ. Press,
Baltimore,
MD. 254 pp.
Richards,
O. W. 1962. ARevisional Study
of the Masarid
Wasps
(Hymenoptera,
Vespoidea).
British
Museum of Natural History, London. 294 pp.
Todd, F. E., and O. Bretherick. 1942. The composition
of pollens.
J. Econ.
Ent. 25:312-316.
... Además de los sírfidos, otras especies del grupo de los depredadores contribuyen a la polinización cuando visitan las flores para consumir polen como parte de su dieta, por ejemplo, especies de Hymenoptera de las familias Scoliidae, Tiphiidae, Pompilidae, Nyssonidae, Sphecidae, Formicidae y Vespidae (Hunt et al., 1991); Mantodea (Mantis); Coleoptera (Coccinelidae, Carabidae y Cleridae) (Figura 34); Neuroptera (Hemerobiidae y Chrysopidae) (Figura 35); Hemiptera (Anthocoridae, Reduviidae y Pentatomidae) y en el grupo de los ácaros las familias Phytoseiidae y Stigmaeidae (Lundgren, 2009). Dentro del grupo de los parasitoides las visitas a las flores son muy comunes, aunque no siempre está claro si las visitan se realizan para obtener néctar, polen o por otras razones (Allen, 1929;Jervis et al., 1993). ...
Chapter
Este libro enriquece el conocimiento actual del control natural en el cultivo del café en Colombia, donde existe baja dependencia del uso de insecticidas para mantener las poblaciones de las plagas inducidas, en cantidades que no causen daños económicos. El libro contiene una revisión de conceptos sobre los factores bióticos y abióticos que regulan las poblaciones de los insectos, especialmente los organismos benéficos que permiten controlar las plagas potenciales. La FNC ha asesorado a los caficultores en el reconocimiento de las plagas del café con énfasis en los controladores naturales; así Cenicafé ha investigado sobre las interacciones entre el clima y las plagas y sus enemigos para recomendar las prácticas de control biológico natural y etológico por encima del uso de insecticidas químicos. Estos resultados de investigación son transferidos al Servicio de Extensión, quienes asisten a los caficultores de Colombia.
... Además de los sírfidos, otras especies del grupo de los depredadores contribuyen a la polinización cuando visitan las flores para consumir polen como parte de su dieta, por ejemplo, especies de Hymenoptera de las familias Scoliidae, Tiphiidae, Pompilidae, Nyssonidae, Sphecidae, Formicidae y Vespidae (Hunt et al., 1991); Mantodea (Mantis); Coleoptera (Coccinelidae, Carabidae y Cleridae) (Figura 34); Neuroptera (Hemerobiidae y Chrysopidae) (Figura 35); Hemiptera (Anthocoridae, Reduviidae y Pentatomidae) y en el grupo de los ácaros las familias Phytoseiidae y Stigmaeidae (Lundgren, 2009). Dentro del grupo de los parasitoides las visitas a las flores son muy comunes, aunque no siempre está claro si las visitan se realizan para obtener néctar, polen o por otras razones (Allen, 1929;Jervis et al., 1993). ...
Chapter
Este libro enriquece el conocimiento actual del control natural en el cultivo del café en Colombia, donde existe baja dependencia del uso de insecticidas para mantener las poblaciones de las plagas inducidas, en cantidades que no causen daños económicos. El libro contiene una revisión de conceptos sobre los factores bióticos y abióticos que regulan las poblaciones de los insectos, especialmente los organismos benéficos que permiten controlar las plagas potenciales. La FNC ha asesorado a los caficultores en el reconocimiento de las plagas del café con énfasis en los controladores naturales; así Cenicafé ha investigado sobre las interacciones entre el clima y las plagas y sus enemigos para recomendar las prácticas de control biológico natural y etológico por encima del uso de insecticidas químicos. Estos resultados de investigación son transferidos al Servicio de Extensión, quienes asisten a los caficultores de Colombia.
... Además de los sírfidos, otras especies del grupo de los depredadores contribuyen a la polinización cuando visitan las flores para consumir polen como parte de su dieta, por ejemplo, especies de Hymenoptera de las familias Scoliidae, Tiphiidae, Pompilidae, Nyssonidae, Sphecidae, Formicidae y Vespidae (Hunt et al., 1991); Mantodea (Mantis); Coleoptera (Coccinelidae, Carabidae y Cleridae) (Figura 34); Neuroptera (Hemerobiidae y Chrysopidae) (Figura 35); Hemiptera (Anthocoridae, Reduviidae y Pentatomidae) y en el grupo de los ácaros las familias Phytoseiidae y Stigmaeidae (Lundgren, 2009). Dentro del grupo de los parasitoides las visitas a las flores son muy comunes, aunque no siempre está claro si las visitan se realizan para obtener néctar, polen o por otras razones (Allen, 1929;Jervis et al., 1993). ...
Chapter
Full-text available
El control biológico natural según Huffaker & Messenger (1964) y Doutt & De Bach (1964), se refiere al mantenimiento de la densidad poblacional de un organismo dentro de ciertos límites por un período de tiempo, debido a la acción de factores bióticos y abióticos, llamado coloquialmente “el balance de la naturaleza”. Los cambios climáticos siempre se han presentado en la evolución del planeta; se tiene evidencia que, durante los 20 mil años posteriores a la última glaciación, la temperatura de la Tierra se elevó alrededor de 8°C, presentándose alteraciones en la vegetación y en la composición faunística de los ecosistemas alrededor del mundo, lo cual se constató por el examen de registros polínicos (Begon et al., 2007). En los ecosistemas, las interacciones tri-tróficas: plantas - insecto herbívoro - enemigo natural (depredadores, parasitoides y patógenos), resultan de un largo proceso de co-evolución específico para un determinado ambiente en condiciones relativamente estables de clima (Hance et al., 2007). Estas interacciones tri-tróficas son afectadas por los cambios climáticos de diferentes maneras, por ejemplo, las alteraciones en la temperatura influencian la biología de cada especie que compone la interacción, provocando una desestabilización en sus dinámicas poblacionales, que puede conducir a la extinción de una parte del sistema (Van der Putten et al., 2004). Un parasitismo exitoso depende de la capacidad de un adulto parasitoide de localizar a su hospedante y de la habilidad de su descendencia para evadir o superar su respuesta inmune. Alteraciones ambientales pueden modificar esta relación entre el parasitoide y su hospedante (Hance et al., 2007).
... Además de los sírfidos, otras especies del grupo de los depredadores contribuyen a la polinización cuando visitan las flores para consumir polen como parte de su dieta, por ejemplo, especies de Hymenoptera de las familias Scoliidae, Tiphiidae, Pompilidae, Nyssonidae, Sphecidae, Formicidae y Vespidae (Hunt et al., 1991); Mantodea (Mantis); Coleoptera (Coccinelidae, Carabidae y Cleridae) (Figura 34); Neuroptera (Hemerobiidae y Chrysopidae) (Figura 35); Hemiptera (Anthocoridae, Reduviidae y Pentatomidae) y en el grupo de los ácaros las familias Phytoseiidae y Stigmaeidae (Lundgren, 2009). Dentro del grupo de los parasitoides las visitas a las flores son muy comunes, aunque no siempre está claro si las visitan se realizan para obtener néctar, polen o por otras razones (Allen, 1929;Jervis et al., 1993). ...
Book
Full-text available
Este libro enriquece el conocimiento actual del control natural en el cultivo del café en Colombia, donde existe baja dependencia del uso de insecticidas para mantener las poblaciones de las plagas inducidas, en cantidades que no causen daños económicos. El libro contiene una revisión de conceptos sobre los factores bióticos y abióticos que regulan las poblaciones de los insectos, especialmente los organismos benéficos que permiten controlar las plagas potenciales. La FNC ha asesorado a los caficultores en el reconocimiento de las plagas del café con énfasis en los controladores naturales; así Cenicafé ha investigado sobre las interacciones entre el clima y las plagas y sus enemigos para recomendar las prácticas de control biológico natural y etológico por encima del uso de insecticidas químicos. Estos resultados de investigación son transferidos al Servicio de Extensión, quienes asisten a los caficultores de Colombia.
... The vespid wasps comprise over 5000 species, including both solitary and social species; these insects are thought to provide important ecosystem services as pollinators of agricultural crops (Hunt et al. 1991;Brodmann et al. 2008;Mello et al. 2011) and natural enemies and regulators of natural arthropod populations and crop pests in agroecosystems (Abd-El-Samie et al. 2018;Prezoto et al. 2019;Southon et al. 2019). However, their impact is largely unstudied, even though they are highly speciose, diverse in form, and distributed worldwide (Nguyen 2007). ...
Article
Full-text available
Globally, biodiversity is declining as a result of anthropogenic pressures, and this could lead to extinction of some species before they are discovered. The loss of insect taxa is of prime concern, given recent reports of significant declines in the populations of many taxa across the globe. Efforts to document biodiversity have met with several challenges, amongst which are the difficulties in using morphological features to discriminate species, especially in insects. DNA barcoding is a rapid and reliable method for species identification and discovery, but choosing appropriate primers to amplify the barcode region without coamplifying contaminants remains a key challenge. We developed and tested a set of primers for PCR amplification of the DNA barcode region of the COI gene in polistine wasps. We tested their efficacy in 36 species of vespid wasps, and the solitary wasp Zethus miniatus Saussure. Samples were obtained from Africa, Americas, Asia and Europe. The polistine-specific primers successfully amplified the barcode region for all polistines tested, without amplifying any Wolbachia present; they also worked with many species from the other Vespidae wasp subfamilies. The new primers are valuable for the discovery and accurate documentation of polistine wasps in the four continents.
... Similar behavior is observed in the relict subfamily Euparagiinae (Clement and Grissell, 1968) with only 10 recent species (Carpenter and Kimsey, 2009). Pollen does not constitute a noticeable component in the diet of adult Eumeninae, which largely obtain proteins from the hemolymph of the paralyzed prey (Chilcutt and Cowan, 1992;Mauss, 2007;Mauss et al., 2019); yet these wasps can also consume small quantities of pollen (Hunt et al., 1991). The main source of carbohydrate food for adult solitary wasps is nectar. ...
Article
A list of 121 plant species in 33 families on which eumenine wasps were recorded feeding on nectar in Crimea is given. Forage plants were ascertained for 58 wasp species. The largest numbers of forage plant species belonged to the families Apiaceae (18), Asteraceae (17), and Lamiaceae (13). The largest numbers of wasp species were recorded on fl owers of the same three families (23, 24, and 28 species, respectively). Among individual plant species, the largest numbers of visiting wasp species were recorded for Dorycnium pentaphyllum subsp. herbaceum (Vill.) Rouy (18 species), Limonium scoparium (Pall. ex Willd.) Stank. (15), Scrophularia umbrosa Dumort. (13), Mentha longifolia (L.) L. (11), and Nigella arvensis L. (11). The choice of fl owers of certain plant families and genera by eumenine wasps, and also the known cases of nectar robbing by these wasps through holes made in the perianth are discussed.
Article
Full-text available
Complex problems in evolutionary biology can be approached in two ways, top down using theoretical constructs and bottom up using empirical studies . Theoretical concepts predominate evolutionary interpretations of eusociality in a literature that is small relative to an enormous literature of natural history and basic research that is not synthesized into a conceptual whole. Here, I draw insights from this literature to show how paper wasps’ allomaternal non-reproductive worker phenotype originates in every colony cycle via confluence of multiple factors of paper wasp biology. These include behavior, development, nutrient dynamics, indirect genetic effects, sex ratio, and demography. A novel perspective on the colony cycle, based on individuals’ reproductive physiology, serves as context to examine of each of these. It will be shown that the allomaternal non-reproductive worker phenotype does not require relatedness among colony members to originate. Allomaternal care of non-relatives is frequent and can occur in at least twelve contexts. Life histories of living species as they will be presented here show that relatedness among colony members is not the target of selection in simple eusociality. However, the novel allomaternal non-reproductive worker phenotype had to be present at the ancestral origins of complex eusociality in which relatedness among colony members is essential.
Chapter
Social wasps present diverse functionalities in ecosystems, from predators, pollinators, detritivores to bioindicators; in addition, their dual participation in the food chain sometimes as carbohydrate consumers and sometimes as consumers of protein, made these organisms particularly attractive for study in community ecology. After 40 years from the first works about social wasps’ communities of the Brazilian fauna, in which these primitives studies concentrated their efforts in describing the communities through faunistic analysis, and along the time passing to the niche analysis and more recently to the interaction networks. Thereby, the main product of these works was the information about the trophic and temporal niches and consequently, the contribution to aspects of the niche partitioning that are in consolidation for this group. In this chapter, with a historic review of researches with communities of social wasps in Brazil, we also attempt to provide brief insights on the assumptions used to access the structure of an ecological community, presenting community organization models described in the literature and examples of how these models are inserted in ecological studies of the Brazilian social wasps, and additionally, we indicate some aspects related to guilds and functional groups and how these communities and their ecological diversity are composed. Thus, this chapter poses some important questions about the study of social wasp communities, which we believe will be guidelines for the coming decades of studies on the ecological aspects of Polistinae fauna in Brazil.
Chapter
Full-text available
Insects maintain many interactions with microorganisms, and these may become key factors for establishing new relationships, environments, and food resources. Such associations with microorganisms may play an important role in colony health, since sociability, especially in Hymenoptera, induce greater vulnerability to pathogens due to the genetic homogeneity and the greater physical proximity among the individuals of a colony. In addition, species-to-species interactions have great potential for the generation of systems with emergent properties. For example, symbiosis provides the host with the ability to use new metabolic pathways or products from the symbiont. Landmark examples of long-term and tightly developed interactions are photosynthetic species and other eukaryotes. The leaf cutter ant-microorganism relationship has generated antibiotics that protect the colony and open a significant new resource for the ants. These themes have been widely explored for many insects, including social groups such as termites, bees, and ants. However, in wasps, and especially in neotropical wasps, the topic deserves stronger research efforts.
Chapter
The study of the foraging activity of social wasps sheds light on their ecological interactions with the environment in which they inhabit. These interactions are the focus of several studies. Research has shown the importance of some species as potential agents of pest control, preying caterpillars of different species. Other studies have demonstrated the action of wasps in pollination processes, since they use floral nectaries in the search for resources with carbohydrate. Some studies with wasps do not focus on forage behavior, but on their biology. There are researches that have revealed the medicinal action of poisons of some groups of Polistinae. Social wasps can also be used as indicators of environmental quality, and their nesting habit is one of the indication forms. However, Polistinae is not always supportive of the human economy. Some research has shown that they cause damage to some crops, destroying fruits or intimidating farmers. This study aims to present ways in which social wasps can be applied in the human economy.
Chapter
Full-text available
The exchange of alimentary liquid among individuals of a social species has been recognized for more than two centuries as a promi- nent aspect of hymenopteran biology. wheeler (1918) coined the term trophallaxis, which is now widely and generally used in reference to Lhis behavior. lJilson (1971), Spradbery (1973), and Jeanne (1980) have given recent and useful reviews of it. The term trophallaxis is at present usually applied to two patterns of liquid food exchange; in one, larval saliva is imbibed by attendant adults, and in the second, ingluvial liquid is passed between adults. The first of these, adult ingestion of larval sali-va, has figured prominently in writings on origins of social behavior. Roubaud (1916) presented the extreme position that the behavior is the cornerstone of vespid soci- ality. West-Eberhard (1978) has taken the opposite position that this forrn of trophallaxis need not be invoked at all to explain group life in wasps. My or.rn position, to be presented here, is intermed- iate between these poles. r will argue that trophallaxis may be the key to our understanding of a more basic and more general phenomenon that has been central to the evolution of hymenopteran sociality. The distinction between the two patterns of trophallaxis needs to be clearly dravrn. The two habits have probably evolved indepen- dently, and each is probably polyphyletic. Both patterns of troph- allaxis, however, exemplify the more general phenomenon to be presented in this paper.
Article
Pollens of plant taxa known to be visited by bees were analyzed in vitro for the presence of four enzymic activities: trypsin-like, chymotrypsin-like, carboxypeptidase A-like, and carboxypeptidase B-like. All pollens examined contained at least chymotryptic activity; other activities were irregular in occurrence. Quantities of the enzymes found are tabulated and are compared with levels of the same four enzymic activities of the midguts of Apis mellifera L. Honeybee midgut activity levels exceed those of the pollens, but the pollen enzymes seem sufficient in some cases for probable physiological activity.
ARevisional Study of the Masarid Wasps (Hymenoptera, Vespoidea) British Museum of Natural History
  • O W Richards
Richards, O. W. 1962. ARevisional Study of the Masarid Wasps (Hymenoptera, Vespoidea). British Museum of Natural History, London. 294 pp.