Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model

School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
Carbohydrate polymers 01/2013; 92(1):84-9. DOI: 10.1016/j.carbpol.2012.09.066
Source: PubMed


Fucoidan extracted from Ecklonia cava had strong anti-inflammatory activities. However, the direct effects of fucoidan of E. cava on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of fucoidan extracted from E. cava (ECF) using tail-cutting-induced and lipopolysaccharide (LPS)-stimulated zebrafish model. Treating zebrafish model with tail-cutting and LPS-treatment significantly increased the ROS and NO level. However, ECF inhibited this tail-cutting-induced and LPS-stimulated ROS and NO generation. These results show that ECF alleviated inflammation by inhibiting the ROS and NO generation induced by tail-cutting and LPS-treatment. In addition, ECF has a protective effect against the toxicity induced by LPS exposure in zebrafish embryos. This outcome could explain the potential anti-inflammatory activity of ECF, which might have a beneficial effect during the treatment of inflammatory diseases.

Download full-text


Available from: Yoonhwa Jeong
  • Source
    • "Vegetal polymers of dextrin derivate produced by the hydrolysis of starch obtained from natural products have been described to have anti-inflammatory properties as well as polymers from marine invertebrates composed by fucose, galactose, xylose, and mannose [5–8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pebisut is a biological adhesive composed of naturally occurring carbohydrates combined with zinc oxide (ZnO) initially used as a coadjutant for healing of anastomoses. Likewise some works demonstrated that carbohydrate complexes exerts anti-inflammatory activity and it is widely known that ZnO modulate inflammation. However, the direct effects of Pebisut on isolated cells and acute inflammatory responses remained to be investigated. The present study evaluated anti-inflammatory effect of Pebisut using lipopolysaccharide (LPS) stimulated human mononuclear cells, chemotaxis, and cell infiltration in vivo in a murine model of peritonitis. Our data show that human cells treated with different dilutions of Pebisut release less IL-6, IL-1 β , and IL-8 after LPS stimuli compared with the control treated cells. In addition, Pebisut lacked chemotactic activity in human mononuclear cells but was able to reduce chemotaxis towards CCL2, CCL5, and CXCL12 that are representative mononuclear cells chemoattractants. Finally, in a murine model of peritonitis, we found less number of macrophages (F4/80(+)) and T lymphocytes (CD3(+)) in peritoneal lavages from animals treated with Pebisut. Our results suggest that Pebisut has anti-inflammatory activity, which might have a beneficial effect during anastomoses healing or wounds associated with excessive inflammation.
    Full-text · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the role of sulfate groups on the macrophage-stimulating activities of ascophyllan, we prepared desulfated ascophyllan, and its effects on RAW264.7 cells were compared with native ascophyllan. The chemical structural analysis revealed that nearly 21% of sulfate groups of ascophyllan were removed by desulfation reaction, while no significant changes in the molecular mass and monosaccharide composition occurred after desulfation. NO- and cytokine- (TNF-α and G-CSF) inducing activities of the desulfated ascophyllan on RAW264.7 cells were significantly decreased as compared to native ascophyllan. Furthermore, the activity of desulfated ascophyllan to induce reactive oxygen species (ROS) generation from RAW264.7 cells decreased to almost negligible level. Our results suggest that the level of sulfate groups of ascophyllan is an important structural element responsible for the macrophage-stimulating activities. Probably, even the limited removal of sulfate residues sensitive to desulfation reaction may result in significant decrease in the bioactivities of ascophyllan.
    Full-text · Article · Jun 2013 · Carbohydrate research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecklonia cava is a common edible brown algae that is plentiful in jeju Island of Republic of Korea. Polyphenols from E. cava have strong anti-inflammatory activity However, a large number of the by-products from E. cava processing are discarded. In the present study, to utilize these by-products, we assessed the anti-inflammatory activity of the polyphenol-rich fraction (PRF) from E. cava processing by-product (EPB) in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells. Four compounds, namely eckol, eckstolonol, dieckol, and phlorofucofuroeckol-A, were isolated and identified from PRF. We found that PRF suppressed the production of nitric oxide (NO), inducible nitric oxide synthase, and cyclooxygenase-2 in the LPS-induced cells. Furthermore, the protective effect of PRF was investigated in vivo in LPS-stimulated inflammation zebrafish model. PRF had a protective effect against LPS-stimulated toxicity in zebrafish embryos. In addition, PRE inhibited LPS-stimulated reactive oxygen species and NO generation. According to the results, PRF isolated from EPB could be used as a beneficial anti-inflammatory agent, instead of discard.
    Full-text · Article · Jun 2014
Show more