ArticlePDF Available

A simple method for decision making in RoboCup soccer simulation 3D environment

Authors:

Abstract and Figures

In this paper new hierarchical hybrid fuzzy-crisp methods for decision making and action selection of an agent in soccer simulation 3D environment are presented. First, the skills of an agent are introduced, implemented and classified in two layers, the basic skills and the high level skills. In the second layer, a two phase mechanism for decision making is introduced. In phase one, some useful methods are implemented which check the agent's situation for performing required skills. In the next phase, the team strategy, team formation, agent's role and the agent's positioning system are introduced. A fuzzy logical approach is employed to recognize the team strategy and furthermore to tell the player the best position to move. At last, we comprised our implemented algorithm in the Robocup Soccer Simulation 3D environment and results showed the efficiency of the introduced methodology.
Content may be subject to copyright.
Disponible en: http://www.redalyc.org/src/inicio/ArtPdfRed.jsp?iCve=133117550013
Redalyc
Sistema de Información Científica
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal
Niki Maleki, Khashayar; Hadi Valipour, Mohammad; Yeylaghi Ashrafi, Roohollah;
Mokari, Sadegh; Jamali, M. R.; Lucas, Caro
A simple method for decision making in RoboCup soccer simulation 3D environment
Revista Avances en Sistemas e Informática, vol. 5, núm. 3, diciembre, 2008, pp. 109-
116
Universidad Nacional de Colombia
Medellín, Colombia
¿Cómo citar? Número completo Más información del artículo Página de la revista
Revista Avances en Sistemas e Informática
ISSN (Versión impresa): 1657-7663
mprada@unalmed.edu.co;avances@unalmed.ed
u.co
Universidad Nacional de Colombia
Colombia
www.redalyc.org
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
AsimplemethodfordecisionmakinginRoboCup
soccersimulation3Denvironment
Unmétodosimpleparalatomadedecisionesen
ambientes3DdesimulacióndefútbolRoboCup
Recibidopara revisión:3 0 deSeptiembrede 2008, Aceptado:28 de Noviembrede 2008 ,Versión final:9 de Diciembrede 2008
Abstract
—I n th i s p a p er  n ew h ier a r ch ica l h y br id  f uzzy cr isp 
meth ods for  decision ma kin g an d a ction selection  of an  agen t in 
soccer simula tion  3D envir onmen t a re p resen ted . Fir st, th e skills
of a n  age nt  ar e in tr od uced , imp leme nt ed a n d cla ssifi ed in  t wo
layer s,th ebasicskillsan dthehighlevelskills.Int hesecondla yer,
a t wop ha se mech an ism fo r d ecision  ma king  is int rod u ced. I n
p ha seo ne, some u sefu l meth ods a re  implem ent ed whi ch ch eck
th e a gent ’ssit u ati on for  p erf orm ing r equ ir ed ski lls. In t he n ext
p ha se, t he t eam  str a teg y,t eam for ma tio n, a gen t’s r ole a nd  th e
agen t’sposition ingsystemareintrodu ced.Afuzzylogicalap proa ch
is emp loyed  to r ecogn izet he  tea m str a te gy a nd  fu rt h er more t o
tell th e pl ayer  th e b est p ositi on t o move.A t la st, we comp ri sed
our  imp lemen ted  alg orit hm in  th e Rob ocup  Soccer  Simu lat ion
3D  en v ir o n me n t  a n d  r e su l ts  sh o wed  t h e  e ff i cie n cy  o f t h e
in tro du ced met hod ology.
Keywords—
M ul tiA gen t  syste ms, M a ch in e lea r n in g, Ar t ific ial
in t e ll ig en ce , R e in f or c em en t  l ea r n i n g , F u zzy L o gi c,  F u zzy
re infor cemen t lear n ing , Rob oCu p soccer  simu lat ion.
Resumen
—E n este a r tícu los e pr esent a u n n u evomét odo d ifu so
hib r ido pa r a la t oma d ed ecisiones yselección d ea cciones de u n
ag ent ee n u n a mbi ent ed e simu lación  de f út bol 3 D. Pr imer o, se
introd ucen, implementa ny clasifican las competenciasdel agente
en  d os ca p a s:  com p ete nc ia s b á si ca s y com pe te n cia s d e n ivel
sup erior. E n la  segund a  cap a se int rod uce un  mecan ismod e dos
fa sesp a r a la t oma d e decision es.E n l a pr imer a  fa se,se a plica n
a lgun os mét od os út iles  qu e p er mit en ver ifica r  la  situ ac ión d el
ag ente p ar a la  ejecu ción de la scomp eten cias r equ eri das .E n la 
siguien te fase, se ad iciona n la est ra tegia  y forma ción d eleq uip o,
y elr ol y sistema d e posición d e losa gen tes. Se emplea la  lógica
KhashayarNikiMaleki
1
,MohammadHadiValipour
1
,RoohollahYeylaghiAshrafi
1
,SadeghMokari
1
,M.R.Jamali
1,2
,CaroLucas
2
1.DepartmentofElectricalandComputerEngineering,ShahidRajaeeUniversity,Tehran,Iran
2.ControlandIntelligentProcessingCenterofExcellence,SchoolofElectricalandComputerEngineering,
UniversityofTehran,Tehran,Iran
{kh.niki,m.h.valipour,r.yeylaghi,s.mokari}@sru.ac.ir, m.jamali@ece.ut.ac.ir,lucas@ut.ac.ir
I.  I NT RO D UC T IO N
R
obocupiscontinuingAIresearchinitiativethatusesthe
gameofsoccerasaunifyingandmotivatingdomain[1,
2]. T he Robocup si mulati on comp etition  pits team s of 11
independentlycontrolledautonomousagentsagainsteachother
inRobocupsimulator,orSoccerServer,arealtime,dynamic
environment[3].TheonlyRobocupsoccersimulatorusedto
be«2D»foryears,manyresearchesinAIhaveperformedin
tha t full cha llengin g envir onment for  functiona lity of the
developedalgorithminamultiagentenvironment[4].Butas
ithasbeensetbyRoboCupFederation[RoboCup,2004], the
ultimategoalcanbeexpressedbyseveraldiscussion.«Bymid
21stcentury,ateamoffullyautonomoushumanoidrobotsoccer
playersshallwinasoccergame,complyingwith theofficial
rulesoftheFIFA,againstthewinnerofthemostrecentworld
difu sapa r ar econocerla estr a tegia deeq uipo yad emásin dicar le
aljugador, lamejor p osiciónpa r amover se.Porúltimo,seincluye
el alg orit mo implemen ta d o en el a mbien te 3D d e Simu lación  de
tb olRoboCupylosresulta dosque demuestr a nla eficiencia de
la met odología  int ro du cida .
Pa labra sClave
—Sistemasmu ltia gente,Ap rend izaje demá quina,
In telig encia  a r tif icial , Ref uer zo d el a pr en diza je, L ógica  d ifu sa ,
Refu er zo del ap r end izaj ed ifu so,Simu lación  de fú tb olR oboC up .
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
110
cupforhumanplayers.»[Kitano&Asada,1998]Sotherewasa
needforamorerealisticplatformratherthantheprevious2D
environmentwhichismorefamiliarwithrealsoccergame.That
leadedtoRobocup3DSoccerSimulator.
AstheoptimalscoringproblemiswellsuitedforMachine
Learn ing (ML) t echniques [ 5], Nowadays m any powerful
methodswithdifferentroots,hasbeenintroducedinMLsuch
as: neural networks [5], genetic algorithms [6], genetic
programming[6], fuzzylogic[7],coordinationgraphs[8,9]
andalsomanyhybridapproachesasacombination ofsome
aforementionedones[4]MLtechniqueshavebeenappliedto
a variety of problems in cl uding data min ing , patt er n
recognition , classification problems, e.g. roa d condition
classifier [Ferdowsizadeh, 2004], adaptive control, robot
control,combinatorialoptimizationandgameplaying.There
arelotsofpublicationsinapplyingthesemethodsinRoboCup
Soccer Si mul ated tea ms mostl y in 2D (and NO T 3D)
environment[1,2, 3,4,5,6,8,and9](therearemuchmore
thanreferencedresearches).Itmayhavedifferentreasons,but
havingproblemwithlowlevelskillsthatleadstodisabilityin
controlling agent s, complica ted dynamics which  makes
predictionsnottoworkwellandavastrangeofperformingsoccer
skills in comparisonwith2D simulatedenvironmentfor sure
arethemostimportanteffectingfactors.Therearenewfeatures
and also limitations in this environment which make some
distinctions in decision making process. (For more detailed
informationyoucanreferto[10,11])
In this paper a  newmeth odology for decision making i n
Rob oCup s occe r s imul ated 3D envi ron ment  wit h a ll
abovement ioned problem s consid erat ion is introduced.
Implementationofrealsoccerskillsintwolayersandutilizing
both fuzzy and non fuzzy algorith ms in different layers of
decisionmakingaretheessentialkeysfortheaccomplishment
of this system. Section two reviews the state of ar t of thi s
methodologyinordertoapplyitindecisionmakingprocess.In
thissectionthebasicskillsandtheirfunctionalityandalsosome
ofsoccer(highlevel)skillsareintroducedand classified.The
firstlayerofdecisionmakingprocessisdiscussedinsectionthree
andthesecondlayerinsectionfour.Sectionfivecomprisesour
resultswhichareimplementedonScorpiusSoccerSimulation
Team
1 andfinallysectionsixconcludesthepaper.
II .LAYERSOF SK ILL S ANDDEC ISIO NMAKI NG PR OCE SS
In t he proposed meth odology some applica ble skill s are
introduced and the decision makin g policy i sdeveloped by
consideringthefeaturesandlimitationsofthisenvironment.
Theskillsareclassifiedintwolayers,inthefirstlayerthere
arethesimpleactionswhicharealreadyimplementedbyserver
(basic skills) and  in the second layer the a ctions are more
complicatedand sometimesa combination of«basicskills»
are used (highlevel skills). Besides, th e decision making
processhastwosteps;firststepconsiderstheagent’sabilities
ofperformingahighlevelskillaccordingtohiscircumstances
and the secon dstep con siders the agen tpositioning and
choosingthebestactionregardingtothefirststepresults.
A.Basicskills
Thebasicskillsaredefinedastheactions,whicharealready
implemented by server [10, 11]. They can be employed by
sending the pr oper comma nds to soccer s erver
2
. Th ese
commandsare:
A(drive x  y  z)
: movesthe agent by applying the force
vector(x,y,z)tocenterofit.
 A(kickalphaf)
:agentkickstheballbyapplyingtheforce
f
withtheangle
alpha
toitiftheballisinkickabledistance.
 A(pantiltangle1angle2)
:Thiscommandchangestheview
directi on of an agen t where «angle1»a nd «angle2» a re
changes(indegrees)ofthepanandtiltangle,respectively.
A(say(«say message here»))
:sends a message to all  the
playersthatarelocatedin50meterfromsender.
 A(catch)
:(forgoalkeeperonly)holdsandfreezestheball
iftheballisinthecatchablearea.
(See [ 10, 12 ] for mor e detai led in format ion about  the
commands)
B.Highlevelskills
High level ski lls ar e those in  which th e world m odel
3
informationandthebasicskillsarebeingapplied.Theseskills
consistoftheactionswithballlike:pass, shoot,dribble,etc.
andactionswithoutballlike:mark,findobjectandinformation
broadcasting.
1)Actionswithball
Toperformtheseactions,basicallyweneedsomeinformation
abouttheballtreats,whenaforcewithaparticularangleis
applied,consideringtheenvironmentparameters(e.g.airforce,
friction,collision,etc).Anumberofcomplicatedmechanical
formulascouldhelptopredicttheballmovements(Figure1
showstheball predictedmotionincomparisonwiththereal
ballpositioninformationgivenfromthemonitor
4
).Someof
themostapplicableskillswithballareasfollows:
1. htt p://www.scorpius.ir
2. These skillsare implemented in rcsoccersim3D_0.5 .5
3. World Modelis a data bank in wh ich the information about the
environment is stored
4.Wewrotea programtoparsethemonitorlogfile.Weassumethat
thisinformationisthemostaccurateonewe mayhavefromwhat
really happens in server.
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment  –  Malekiet al111
 Shoot
Shootingforsureisthemostimportantskillinsoccerand
allotherskillslikepass,dribble,etcarebasedonit.Aplayer
inthisenvironmentcanonlykicktheballinfrontofhimself,
soheneedstogetbehindballinacorrectpositiontoshootthe
ballinhisdesireddirection(seeFigure4).
 Pass
The agent kick st he ball so that the othe r teammate can
receiveit.Thiscanbeasimpledefinitionfortheskill«pass».
As this skill can be usedi n different situations, the
type
 is
definedforit.Wehavethreekindsofpass:
1.Securepass
:Theplayeriscompletelysurethat this
pass will arr ive to the player h e wishes. The most
popularusageofthistypeofpassiswhentheballisin
dangerzone
5
.
2.Normalpass
:theprobabilityofsuccessinpassismore
thanitsfailure.Mostlyusedinthemiddleofthefield.
3.Riskypass
:In thiscase,theprobabilityofballarrival
exists, but the possibility of failure is more than its
success.T his type is used in order to create a good
situationforteam.
 Dribble(runwithball)
Theagentusuallyusestheskill«dribble»whenheownsthe
ballinanalmostfreespaceandcan’tfindtheotheragentswith
betterpositionsorcan’tpassthemtheball(seeFigure7b).
∙ Clearball
Thisisanactionthatagentchoosestodo,whenheownsthe
ball an d can per form no other a ction or  the pla yer is i n
dangeroussituation, mostlyhappens in
 defense
.Depending
ontheoccurredcircumstance,theagentmaykicktheballout
ofthefield,towardtheopponentgoalorotherpositions.
5.Dangerzone isdefinedinfuzzymemberfunction(see Fig.4)
Figure1.Thecomparisonbetweenthemechanicalformulausedforball
motionpredictionandtherealdatagivenfromthemonitor.
2)Actionswithoutball
Theseskillsmakeagentstobearrangedinpositionssothat
theywouldhavethemostchancetocreateopportunitiesfor
teamortogettheopponentsopportunities.
 Mark
Markskillapproachestwopurposes:
1.Nottolettheballreachestheopponents(markplayer).
2.Nottolettheopponentsshoottotheirdesiredposition
(markball).
Accordingtothepurposetheplayergetsneartotheopponent
uptothe
MarkSecureDistance
andmarkshim.
 Pantilt(objectfindingskill)
Theagentusesthisskilltofindanobjectand/ortoupdate
hisworldmodel.Therearetwodifferentconditions:
1.  The agent seesan object butwants to keep it in the
centerofhisvisionnottoletthatobjectgetsoutsight
easily.Thisusuallyhappensforballbecauseitslocation
variesveryfastandeasilymayget outoftheagent’s
sight(Figure2).
2.Theagentdoesn’tseethe object;inthiscasehepans
with
MaxPanAngle
withthedirectioninwhichthelast
timethatobjectwasseen.
 Say(informationbroadcastingoralertingskill)
Thisskillisbeingusedforalerting theagents and alsoto
updatetheirworldmodels.Dependingonhowmanycharacters
percycleanagentcantalk,hecanusetheminordertoupdate
theotheragents’worldmodels.Oneofthemostrecommended
usagesofthis skillis utilizedin mark.Whenthedefenders
«
markball
»theopponentstheydonotseetheopponentswhich
are marked. Sotheyneedtochange their viewineach few
cycles,butwhentheballgetsneartheymayfocusonballand
forgetabouttheagent.In thiscaseorsimilareventswecan
usesayskilltoupdateandalsoalerttheagents.Figure2shows
thisevent.
Figure2. Thegoalkeepersaysamessagetoupdatethedefendersworldmodel.
Theycan’tseetheopponents’displacementbehindthem.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
112
II I.DECISI ON MAK INGPH ASE1
In t his pha se, the ag ent ability of per forming an  action
accordin g to the en vironment  situation (e.g. opponents’
positions/speed,ballposition/speedandtheirpredictedstates)
istestedbyDecisionMakers(DM) toconfirmifthataction
can be done by the agent in that condition. Some of these
decisionmakersareexplainedbelow:
 DMforshootingtoaposition
Todetermineifanagentcanshoottoapositionornot,firstthe
agentcalculatestheminimumdegree,forshooting,ifthedegree
couldbefoundlessthan
MaxKickDegree
thentriestofindan
anglebetweenmindegreeand
MaxKickDegree
andaforceless
than
MaxKickForce
.Iftheangleandaforcefoundwiththese
propertiestheDMreturns
true
,otherwiseitreturns
false
.
Figure3.Shootingtoapositionrequiresminimumangleátobelessthan(
MaxKick
Angle
)andminimumdistance
d
lessthan
(MaxKickDistance)
 DMforShoottogoal
First,theagentquantizesthegoal, to
n
discrete positions.
Foreachpositionfirstchecksthe
Shoottoposition
conditions,
iftheresultistruethenchecksthefollowingcondition:
Let Tbbe the time takes ball to meett he target with the
maximum speed, an dT r be the rotati on time for the ball
controllertoadjustit’spositionbesidetheball.Tgrepresents
thetimetakesgoalietocatchtheball(Figure4).Havingcalculated
theabovethreeparameterswedefine
Dt
asfollowing[7]:
)(
 TrTbTgt
+ - = D(1)
Figure4.Thetimeintervalsneededforpredictioncalculationappliedinshoot
togoaldecisionmaker.
Thesignof
Dt
showsiftheagentcanshoottothatposition
ornot.
DMforpa ss
ThisDMgetstheballpositionandthepassreceiverasinput
parameters.toknowwheretousewhichtypeweimplemented
afuzzyalgorithm.Thisfuzzyalgorithmaccordingtotheball
positionandtheplayersituationtellsus which typeis more
properandalsogivesthe
MaxAllowedPassError
:
Figure5.Fuzzyinputmemberfunctions;a.ballpositioninputvariable
b.passreceiversituationinputvariable
a
b
Fuzzyrulebaseforpassisasfollows:
1.If(positionisDanger)then(passtypeisSecure).
2.If(positionisSafe)and(situationisBad)then(passtypeis
Secure).
3. If(position is Safe) and (situation is Normal) then (pass
typeisNormal).
4.If(positionisSafe)and(situationisGood)then(passtype
isRisky).
5.If(positionisRisk)and(situationisBad)then(passtypeis
Secure).
6.If(positionisRisk)and (situationisNormal) then(pass
typeisNormal).
7.If(positionisRisk)and(situationisGood)then(passtype
isRisky).
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment  –  Malekiet al113
Figure6.Therelationshipbetweenballpositionpassreceiversituationand
MaxPassError
accordingtothefuzzyalgorithm.
Afterthepasstypeand
MaxPassError
becamedetermined,
agentcheckshisabilityforperformingthistypeofpass.
Firsttheagentchecksifhe
canshootto
thepasspositionor
notthentheamountofriskwillbecalculated.Thefollowing
factorshavetobecheckedinordertocalculatetheriskofpass:
1. Opponentsaroundtheball
2. Therelativeagentpositionwithball.
3. Themaxerrorforgettingpositionbehindtheball
4. The position of opponents around the player we want to
passto,andtheirdistanceswithhim.
5. Theballpath
Let
t1
bethetimetakesplayertogetpositionbehindball.It
dependsonfactors1,2,and3whichvarywithpasstype,and
t2
bethetimetakesforopponentstoreachtheball,theplayer
canpass
when
t1
islessthan
t2
.(SeeFigure7.a)
Let
t(i)
bethetimetakesforopponent
i
tointercepttheball
consideringtheballheightfromthefieldatposition
p(i)
with
error
E1
,and
t1(i)
isthetimetakesforballtoreach
p(i)
with
error
E2
,where
E1
and
E2
varywithpasstype.If
 t1(i)<t(i)
forall
 i
opponentsthenplayer
canpass
.Andthelastfactoris
whenthetargetplayer,getstheball.Hemusthave
SecureTime
(t5inFigure7.a)tocontroltheball,which varieswithpass
type.Nowwiththeamountofrisk,theplayercandetermine
whetherhecanpasswithrequestedtypeornot.
a
Figure7.a. Player1 wants topass toplayer2, b. d1isthe Secure
DribbleDistance and á is the Secure dribble angle
b
 DMforDribble
Todetermineifitissafeenoughforplayertodribble(run
withball)
First,theplayerdrawsaconewith
SecureDribbleAngle
in
frontofhimself,ThenhechecksIfthereisnoopponentwith
distancelessthanorequalwith
SecureDribbleDistance
inside
theconesubsequentlyhepredictstheballpositionafterkick
whentheballspeedislessthan
MaxBallControllableSpeed
letittaket1,nexthepredictstheopponent playersplusthe
agenthimselfpositionsaftert1,assumingthattheymoveto
theballpredictedpositionwiththeir
MaxSpeed
.Ifthenearest
playertotheballaftert1isthe agenthimselfthen the DM
returnstrue,otherwisereturnsfalse(Figure7.b).
 FindOpponenttomark(DMformarking)
Theplayersearcheshisstrategicarea(seesectionVformore
details)for
 not marked
 opponents, if there werem oret han
oneopponent,andthenchecksthepossibilityofmarkingeach
opponent. Thi s possibility ma y have th e same factors we
representedin
canpass
function.Atlast,playercandetermine
thebestplayertomark.
IV.DEC I SIO NM AKING PHASE 2
Themajorissueswehaveaddressedinthis phase are the
static assignment of roles and dynami c team strategy. We
adopteda formation/rolesystemsimilar toone describedin
[13,14,and15]eachformationcontains:
Formation name
 : Like real soccer team formations (e.g.
4_4_2)
Str ategic  area
: Th e area in  which the pla yer is mostly
supposedtobe.
Centerofstrategicarea
:alsoknownasthehomeposition
Playerrole
:weintroduced4applicablerolesforagents:
goalkeeper,defender,halfbackerandattacker.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
114
Inthismethodologytheplayerroleisstaticallyassignedto
theplayeraccordingtohisplayernumber,buttheteamstrategy
varieswithdifferentfactors.Themostimportantfactoristhe
ballposition.Accordingtothischangesinstrategythestrategic
areaoftheplayer,changes.Toselecttheappropriatestrategy
wedevelopeda fuzzyalgorithm (Figure8). Inadditionthis
algorithmhelpsanagenttofindouttheproperdistancewith
ballaccordingtohisstrategicarea(Figure9.).
Figure8.Fuzzymemberfunctionforselectingstrategy;a.outputvariable
stra tegy
b.inputvariable
ballPosition
Fuzzyrulebaseforstrategyisasfollows:
1.If(BallPositionisSec1)then(strategyisDanger)
2.If(BallPositionisSec2)then(strategyisCareful)
3.If(BallPositionisSec3)then(strategyisAttack)
4.If(BallPositionisSec4)then(strategyisGoodToGoal)
Figure9.Therelationshipbetweenballpositionanda
halfback
player
strategicpositioninfuzzyalgorithm.
a
b
Dependingontheagent’steamortheopponents’teamowns
theball(seesec. IV.
B
.)the output variable strategy(Figure
8. a) of fu zzy fun ction m ay chan ge. T he la st r emain ing
conditioniswhentheagentownstheball(seesec.IV.
A
.),in
this state agent usesthephase1decisionmaking results to
performanappropriateoperation(Figure10).
Figure10.Thediagramforactionselectionwhenplayersowntheball
A.Whoisthenearestplayertoball?
Afunctionisimplementedthatpredictstheballpositionafter
itsspeedislessthanorequalwith
MaxBallControllableSpeed
,
Thenreturnstheplayerwhoistheclosesttothatposition.
B.Whichteamownstheball?
Anotherfunctionisimplementedtocheckiftheballspeedis
lessthan
MaxBallControllableSpeed
 then callsthe
Nearest
Pla yer t o ball
 function, if th e player team side which th is
function r eturns, was t he same of ours, then t his function
returns 1 otherwisereturns0,Butiftheball speedismore
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment  –  Malekiet al115
thanthevaluementionedabove,thenthisfunctionreturns1,
thatmeanswecannotdeterminewhetherballisoursornot.
V. RE SULT S
Weimplemented this meth odology on Scorpius Soccer
SimulationTeam.Astherearenotmanysourcecodesand/or
binariesof3Dteamsadoptivewithlatestchangesofserver
6
,
wedecidedtocompare thisteamwithitspreviousversion
7
.
Theresultsshowedthesuccessofthismethodology;theteam
performance in coordination an d collaboration h ighly
improved, in fact the players switched th eir strategic area
smoothlyastheteamstrategychangedinareasonablemanner,
the agents ca rried out th e high level ski lls much more
efficientlyandatlastthefinalresultsenhancedsignificantly
(Table1.Showsthefinalmatchresults).
VI.C ONC L USION
Inthispaper,anewmethodfordecisionmakinginRoboCup
soccer 3Dsimulation environmenthas beenproposed.First
an id ent ifica tion ap pli ed t o the Robocup Soccer 3D
environment whichledtomechanicalformulas,thensoccer
skillswereintroducedandclassifiedindifferentlayersthena
twophase mechanism for decision making is presented, in
this mechan ism both fuzzy and nonfuzzy algor ithms are
appliedand finallytheproposedmethodologyimplemented
onaRobocupsoccersimulationteamandtheresultsshowed
theefficiencyofthismethodology.
ACK NOWLE DG EM ENT
AuthorsexpressthankstoMr.S.MahdiHosseinifromthe
ECEdepartment,UniversityofTheran,fortheideas,which
oneswereusedatwritingarticle.
RE FE RENC ES
[1]StoneP.andMcAllester,D.,2001.AnArchitectureforActionSelectionin
RoboticSoccer.
AGENTS’01,
Montr´eal,Quebec,Canada.
[2]Veloso,M.,Pagello,E.andKitano,H.,editors,2000.RoboCup99:Robot
SoccerWorldCupIII,SpringerVerlag,Brelin.
[3]Noda,I.,Matsubara,H.,Hiraki,K.andFrank,I.,1998.Soccerserver:Atool
forresearchonmultiAgentsystems,AppliedArtificialIntelligence,12:pp.
233250.
6.The simu lation env ironme nt used for experimental results is
:rcsoccersim3D.0.5.5
7. This version wa sso similar to which placed 6t h  in Iran Open
2006 In ternationalRobocup Competitions.
[4]  Alireza F. Naeeni, 2004 .Advanced MultiAgent Fuzzy Reinforcement
Lear ning. D EGR EE PROJ ECT  Compu ter Eng ineeri ng, Hogs kola n
Dal ama u niversi ty Pre ss.
[5]  Dezfou lian, M. H. ,Ka viani, N. , Nikanja m,A. a nd RafaieJok andan,
M., 2 005 . Trai ning a Si mula ted Socce rA gent how to  Shoot u sing
Artifi cial  Neura l Net works. P roceedi ng of the I rania n Resea rchers
Confe rence  in Eu rop e.
[6]   Mal ec, J.  and Go rbet,  R., 2 003 . Ath esis for  Maste r of Sci ence in
Engin eering Physi cs. Lund u niversit y Press, Sweden .
[7]  Mozafa ri, M., Fard, A. M., Salma ni,V. and Naghibzadeh, M ., 2006.
An Improved Fuzzy Mechanism for 3D Soccer Player Agent’sShoot
Skill. IE EE INDICON , New Delhi, India.
[8]  Kok, J. R., Vlassis, N. and Groen, F., 2003. UvATrilearn 200 3Team
Desc ript ion.  Robot  Socce r World Cup V, LN AI, S prin ger Verla g,
Berlin.
[9]  Guestrin, C., Venkatara man, S. and Koller,D., 2 002. Context speci¯c
mu ltia gent  coor dina tion  and  plan ning  with  fact ored  MDPs. I n
Pro ceedi ngs  of th e Ei ghtee nth  Na tiona l C onfer ence  on Ar tific ial
Int ellig ence, Edmon ton,  Cana da.
[10] RoboCu pS occerSer ver3 D maintenance group, 200 3. The RoboCup
Socce r Simu lator  Manu al. h ttp:/ /sserver. source forge.ne t.
[11] Reis,L. P.and Lau, N., 2003 .RoboCup 3D Simulator   FCPortu gal
user ’s guide,  http: //www.ieeta .pt/r obocu p/archi ve.htm .
[12]  RoboCu p Soccer Server 3 D maint enance grou p, 200 3. Text instea d
of M anua l, h ttp:/ /sser ver.sou rcef orge.ne t.
[13 ] Cast elpietr a, C.,  locchi, L ., Nard i, D., P iaggio , M., Sca lzo, A. and
sgor bissa , A., 2 00 0. C oordi nat ion a mong  Hete rogen eous Rob otic
Soccer  Playe rs, In Pr oc. of Int ernat ional C onference o n Intel ligent
Robots a nd Systems (IR OS 20 00), Vol. 2 pp. 13 8513 90.
[14 ] Stone P., and Veloso M., 1 99 9. Task  decomposi tion,  dynami c role 
assignment and lowb andwidthcommu nication forr eal time strategic
team wo rk.  An Artifi cial I ntelli gence 11 0(2) , pp. 2 1127 5.
[15] Stone, P.a ndVeloso, M., 1998. Individua la ndcolla borativebehavior
in a tea m ofh omogeneous robot ic soccer agent. I n Proc. Of the 3
rd
int erna tiona l con feren ce on mu lt i agen t syst em.
K hash aya r N iki M aleki is B.Sc. student in Co mputer
Hardwa re Engineering in Depa rtment of Electrical an d
Compu ter E ngine ering, S hahi d Raj ae e Univer sity,
Tehran , Iran . He is a mem ber of Scor pius Simu latio n
Tea m, whi ch ha s particip at ed in ma ny Robocup
compet ition s. He  is IEE E/ACM  stud ent memb er. His
inter ested  resea rch area s are  mu lt i agent sy stems,
rein forcemen t lear ning a nd Syst em Ident ificat ion a nd
prog rammin g for emb edded syst ems.
M oha m ma d H a di Valip ou r  rec eived the B.Sc . degree
in I nformatio n Technology  Engin eering from
Depa rt ment o f Elec trica l a nd Co mpu ter E ngine erin g,
Shahid Rajaee University,Tehran, Iran in 20 08. He is a
member  of Scorpiu s S imul at io n Te am , wh ich h as
parti cipated in ma ny Robocup co mpetitions. Also he is
IEEE/ACMstudent member.His interestedresearchareas
are soft ware archi tecture,  agent ori ented progra mming,
communi cation syst ems, and mul ti agent sy stems.
Sad egh  M oka r i is B.Sc. student i nCo mputer Har dware
Engin eering i n Depar tment o f Electri cal an d Compu ter
Engineering, Sha hid Rajaee Univ ersity,Tehran, Ir an. He
is a mem ber of Scor pius Si mulat ion Team, whi ch have
partici pated in many Robocup  competitions. He is ACM
student  member. His inter ested resea rch area s are mul ti
agent  systems and  artifici al neu ral net works.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
116
Roo h ollah  Yey la g h i Ash r af i is B. Sc. student  in
Compu te r H ardw ar e E ngine ering  in  Departmen t of
El ectr ica l and  Comp uter  Eng ineer ing,  Shah id R aja ee
Uni versi ty, Teh ran , Ir an.  He i s a m ember  of S corp ius
Simulation Te am, wh ich ha ve partici pa te d in ma ny
Robo cup c ompetit ions.  He is  inter ested i n open  sour ce
proje cts and m ulti  agent sy stems.
M oh am m ad  Re za  J am a li re ceived t he B.Sc . degr ee
in C ompu ter Ha rdw are En gine ering  from Ami rka bir
Univ ersit y of Tec hnolo gy in 2 00 1. H e got  the M .Sc.
degree fro mS hiraz Uni versity in t he field of Artificia l
In tell igenc e in 2 003 . He i s a P h.D. c andi dat e sinc e
2004 under the supervisionof ProfessorLuca sin Centre
of Excell ence for Contr ol and Intel ligent Proc essing at
the De pa rt ment o f El ect ri ca l a nd  Compu ter
Engineer ing, Universi ty of Tehran, I ran. He i si nterested i n evoluti onary
algor ithms, multi  agent systems and design  methodologies in con trol and
aut omati on syst ems. Also he i s the le ader o f Scorp ius Si mula tion t eam
since  2005 .
C ar o  L u ca s rec eived  the M. Sc. degr ee from the
Uni ver sity  of Tehr an,  Ira n, i n 19 73 , an d the  Ph.D .
degree fr om the Uni versity of Cal ifornia , Berk eley, in
19 76 . He  is a  Pr ofesso r of C ent re of  Exce llen ce fo r
Cont rol and I ntel ligen t Pro cessin g at t he De par tment
of Electr ical a nd Comput er Engin eering, Uni versity of
Tehran,  Iran,  as well as a R esearch er at the S chool of
Intel li gent S ystem s (SIS), Insti tu te for St udie s in
Theor etical Physics and M athematics (I PM), Tehran, Ira n. He has served
as the Director of SIS (1 99319 97), Cha irman of the ECE Depart menta t
the University of Tehran (1 9861 988), M anaging Editor  of theM emories
of the Engin eering Facul ty,Un iversity of Tehran ( 1979 1991 ), Reviewer
of Mat hematica l Reviewers (since 1 987) ,Asso ciate Edi tor of J ournal o f
Intel ligent a nd Fuzzy sy stems (19 921 999 ), and  Chairma n of the IE EE,
Ira nS ection (1 990 1992 ). He was a lso a Visiting Associat eP rofessor at
the University of Toronto (summer, 198 91990 ), University of California ,
Ber keley  (19 88 198 9) , an Assi stant  Profess or a t Gar you nis Un iversi ty
(1 984 19 85 ), Un iver sity o f Ca lifor nia  at L os Angel es (1 97 51 976 ),  a
Sen ior R esea rch er a t the  Int erna tio nal  Cent re f or T heor etic al Phys ics
and the In ternati onal Centr e for Genetic En gineering a nd Biotechnol ogy,
bot h in T rie ste,  Ita ly, t he I nsti tut e of App lied  Mat hema tic s Ch ines e
Aca demy  of S cie nce s, H arb in In sti tu te o f El ect ric al T echn olo gy, a
Re sea rch A ssoc ia te a t t he M anu fa ctu ri ng R ese ar ch C orp ora ti on o f
Ontar io, and a Resea rchAssi stant at the Elec tronic Researc h Laborat ory,
University ofCa lifornia, Berkeley. He isth eholder of Patent on «Speaker
Independent Fa rsi Isolated Word Neurore cognizer». His resea rch interests
in clu de bi olog ica l com put ing , com put ati ona l in tel lige nce,  unc ert ain
system s, int ellig ent cont rol, n eura l netw orks,  mult iagen t syste ms, dat a
mi ning, b us in ess i ntel li ge nc e,  fi na ncia l mode li ng  and know le dg e
man agem ent.  Profe ssor L uca s has s erved  as th e Chai rma n of sev eral
In ter nat ion al C onf ere nces . He  was  the Fo und er o f th e SI S an d ha s
assist ed in foun ding severa l new resea rch org anizat ions and eng ineerin g
disci plines i n Ira n. He i s the re cipient  of sever al r esearch  gran ts at t he
Unive rsity o fTehr an and  SIS.
... Для виконання дій з м'ячем потрібно враховувати можливі загрози (перехоплення опонентом, рикошет, недоліт і т.д.) траєкторії руху. Для цього застосовано алгоритми передбачення руху, які враховують дані навколишнього середовища (швидкість тіл на полі, прискорення, тощо) [6]. ...
Article
У даній статті наведено основні принципи та підходи до командної взаємодії інтелектуальних агентів, що використовуються у всесвітніх змаганнях 2D RoboCup simulation league. Відповідно до підходу – «Drop-in player challenge», розроблено та описано базові моделі поведінки, що були протестовані в середовищі моделювання 2D RoboCup simulator. Стаття стисло описує суть моделей поведінки супроводжуючи ілюстраціями та хід проведення експериментального тестування з результатами у вигляді таблиць. Підходом «Drop-in player challenge» почали займатися відносно недавно. Багато відомих команд, такі як Austrian Kangaroos, B-Human, Cerberus, що змагаються восновних лігах почали брати участь у змаганнях «змішаних» гравців. Це свідчить про потребу саме в такому типі взаємодії. Основна задача роботи – це вдосконалення взаємодії з союзними роботами, що мають інші кодові бази. Такі роботи не мають змоги комунікувати – тільки аналізувати дії союзних гравців і бути корисними для досягнення спільної мети. Також присутній елемент внутрішньо-командної конкуренції, коли задача агенту не тільки максимально допомогти союзним роботам, а і стати найрезультативнішим гравцем в команді. Тема основної роботи охоплює проблематику окремих випадків тактики гри команди, на кшталт, гри з застосуванням тільки нападаючих моделей поведінки, гри з застосуванням тільки оборонних моделей, різних комбінацій моделей поведінки для визначення глобального оптимуму виграшної тактики. За результатами тестування було визначено ефективність розроблених моделей поведінки, найкращі співвідношення застосувань моделей на полі, а також протестовані пограничні випадки застосування моделей, що підтвердило теоретичні передбачення. Бібл. 6, іл. 7, табл. 4.
... This stage of Soccer Simulation in Robocup competitions is a good condition to see the result of previous researches in high level skills on a humanoid simulated robot. So we want to enter to another phase of humanoid soccer robot skills, which we've researched in them on previous sphere version of soccer simulation server [2]. Those skills can be shoot, dribble, pass, powerful prediction, and etc. ...
Technical Report
Full-text available
Creation of a mechanical machine in human shape, having the same locomotion and even more capabilities has always been one of the human beings desires. Thus research on humanoid robotics is one of the most exiting topics in field of robotics [3]. There are lots of projects in this field [4… 7], most of them are focused on biped walking and running [1, 4, 6]. Now, after many researches, there are still some unknown secrets about human locomotion nature, physics and dynamics, which may increase difficulty of problem.
Chapter
The past few years have witnessed a proliferation of industrial and decision making applications of a novel neurocontroller designated as BELBIC: Brain Emotional Learning Based Intelligent Controller. Based on a proposed open loop descriptive model of the midbrain, where emotional processing is understood to mainly take place, its utilization has been motivated by the belief that most human decisions are made using bounded rationality. Successful control engineering and decision making applications are reviewed, where BEL has been used for satisficing action selection based on artificial emotions. Laboratory and Industrial scale applications are emphasized. Recent results on stability and performance guarantees are also examined. Finally flexible bioinspired SOC and other hardware/software implementations of BELBIC are investigated. It is argued that in order for VLSI implementations of neural networks to be commercially viable, it is crucial to minimize the redesign expenses for their optimal dedicated implementations for any given application on any desired platform. Furthermore, on line applications require recursive learning that need not precede the recall mode. High levels of adaptability, disturbance rejection, and fault tolerance are other important characteristics of the proposed IC. KeywordsDecision and control–neural network–artificial emotion–model driven architecture–SOC implementation
Conference Paper
Full-text available
RoboSoccer simulation is a complex multi-agent system in which agents play the role of soccer players and the main goal is to have a perfect domain for research and investigation on artificial intelligence. This paper intends to propose a new scoring module to select the best point on the goal line to shoot, considering player's position, catching and shooting time difference, and distance to target. Two different approaches have been implemented for this purpose. The first one is a simple decision making policy and the latter one takes advantage of statistical measurement and fuzzy decision making. Results show the superiority of the proposed method performance in over our previous work implemented on Nexus 3D RoboSuccer team of Ferdowsi University
Conference Paper
Full-text available
Coordination among multiple robots has been extensively studied, since a number of practical tasks can be performed in a more effective way by employing a fleet of coordinated robotic bases. In particular, distributed coordination among robotic agents has been considered within the framework offered by the robotic soccer competitions. We describe the methods and the results achieved in coordinating the players of the ART team participating in the RoboCup F-2000 league. The team is formed by several heterogeneous robots having different mechanics, different sensors, different control software, and, in general, different abilities for playing soccer. The coordination framework we have developed has been successfully applied during the 1999 official competitions allowing both for a significant improvement of the overall team performance and for a complete interchangeability of all the robots
Article
Full-text available
This paper describes the main features of the UvA Trilearn soccer simulation team, which participated for the first time at the RoboCup-2001 competition. The main concepts of the previous teams will be addressed, followed by the improvements introduced in UvA Trilearn 2003. These include an extension of the intercept skill, improved passing behavior and especially the usage of coordination graphs to specify the coordination requirements between the di#erent agents. Finally, we will give some conclusions and describe future research directions.
Article
Full-text available
This paper describes Soccer Server, a simulator of the game of soccer designed as a test-bench for evaluating multi-agent systems and cooperative algorithms. In real life, successful soccer teams require many qualities, such as basic ball control skills, the ability to carry out plans, and teamwork. We believe that simulating such behaviors is a significant challenge for Computer Science, Artificial Intelligence and Robotics technologies. It is to promote the development of such technologies, and to help define a new standard problem for research, that we have developed Soccer Server. We demonstrate the potential of Soccer Server by reporting an experiment that uses the system to compare the performance of a neural network architecture and a decision tree algorithm at learning the selection of soccer play-plans. Other researchers using Soccer Server to investigate the nature of cooperative behavior in a multi-agent environment will have the chance to assess their progress at RoboCup-97...
Article
This paper shortly describes the main features of the UvA Trilearn soccer simulation team, which participates since 2001 in the RoboCup competition. The main concepts of the previous teams are addressed, followed by the improvements introduced in UvA Trilearn 2004. The latter are related to the coordination of the agents using the coordination graph structure introduced in UvA Trilearn 2003. We will show how we apply this model both for action selection and for teammate modeling.
Article
We present an algorithm for coordinated decision making in cooperative multiagent settings, where the agents' value func- tion can be represented as a sum of context-specic value rules. The task of nding an optimal joint action in this set- ting leads to an algorithm where the coordination structure between agents depends on the current state of the system and even on the actual numerical values assigned to the value rules. We apply this framework to the task of multiagent plan- ning in dynamic systems, showing how a joint value function of the associated Markov Decision Process can be approx- imated as a set of value rules using an efcient linear pro- gramming algorithm. The agents then apply the coordination graph algorithm at each iteration of the process to decide on the highest-value joint action, potentially leading to a differ- ent coordination pattern at each step of the plan.
Article
One of the main objectives in a soccer game is to score goals. It is, therefore, important for a robotic soccer agent to have a clear policy about whether he should attempt to score in a given situation, and if so, which point in the goal he should aim at. In this paper we describe the implementation of a learning algorithm used in a RoboSina agent to satisfy this requirement. By the use of this method, we are to adapt an optimal scoring policy for the agent. Practical results of the implementation are also included and discussed.
Conference Paper
Robotic soccer is a new challenging multi-agent domain, in which agents need to collaborate in an adversarial environment to achieve specific objectives. We describe CMUnited-97, our team of robotic agents that we developed to enter the RoboCup-97 competition. We first discuss the challenges underlying the robotic soccer domain as a multi-agent system. We then introduce our team architecture, briefly describe the system's perception, and present the robots' actions ranging from low-level individual behaviors to coordinated, strategic team behaviors. The robots can organize themselves in formations, hold specific roles, and pursue their goals. In game situations, they extensively used their role-based behaviors, and demonstrated collaboration on multiple occasions. As homogeneous agents, the robots can also switch roles to maximize the overall performance of the team. CMUnited-97 won the RoboCup-97 small-robot competition at IJCAI in Nagoya, Japan
Article
CMUnited-99 was the 1999 RoboCup robotic soccer simulator league champion. In the RoboCup-2000 competition, CMUnited-99 was entered again and despite being publicly available for the entire year, it still nished in 4th place. This paper presents some of the key elements behind ATTCMUnited -2000, one of the three teams that nished ahead of CMUnited-99 in RoboCup-2000 out of thirty four entrants. Playing against CMUnited-99, ATT-CMUnited-2000 scores an average of about 8 goals per opponent goal. This paper describes some of the key innovations that make this improvement possible.
Article
Multi-agent domains consisting of teams of agents that need to collaborate in an adversarial environment offer challenging research opportunities. In this article, we introduce periodic team synchronization (PTS) domains as time-critical environments in which agents act autonomouslywith low communication, but in which they can periodically synchronize in a full-communication setting. The two main contributions of this article are a flexible team agent structure and a method for inter-agent communication in domains with unreliable, single-channel, low-bandwidth communication. First, the novel team agent structure allows agents to capture and reason about team agreements. We achieve collaboration between agents through the introduction of formations. A formation decomposes the task space defining a set of roles. Homogeneous agents can flexibly switch roles within formations, and agents can change formations dynamically, according to pre-defined triggers to be evaluated at run-ti...