Content uploaded by M. Hadi Valipour
Author content
All content in this area was uploaded by M. Hadi Valipour on Feb 04, 2014
Content may be subject to copyright.
Disponible en: http://www.redalyc.org/src/inicio/ArtPdfRed.jsp?iCve=133117550013
Redalyc
Sistema de Información Científica
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal
Niki Maleki, Khashayar; Hadi Valipour, Mohammad; Yeylaghi Ashrafi, Roohollah;
Mokari, Sadegh; Jamali, M. R.; Lucas, Caro
A simple method for decision making in RoboCup soccer simulation 3D environment
Revista Avances en Sistemas e Informática, vol. 5, núm. 3, diciembre, 2008, pp. 109-
116
Universidad Nacional de Colombia
Medellín, Colombia
¿Cómo citar? Número completo Más información del artículo Página de la revista
Revista Avances en Sistemas e Informática
ISSN (Versión impresa): 1657-7663
mprada@unalmed.edu.co;avances@unalmed.ed
u.co
Universidad Nacional de Colombia
Colombia
www.redalyc.org
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
AsimplemethodfordecisionmakinginRoboCup
soccersimulation3Denvironment
Unmétodosimpleparalatomadedecisionesen
ambientes3DdesimulacióndefútbolRoboCup
Recibidopara revisión:3 0 deSeptiembrede 2008, Aceptado:28 de Noviembrede 2008 ,Versión final:9 de Diciembrede 2008
Abstract
—I n th i s p a p er n ew h ier a r ch ica l h y br id f uzzy cr isp
meth ods for decision ma kin g an d a ction selection of an agen t in
soccer simula tion 3D envir onmen t a re p resen ted . Fir st, th e skills
of a n age nt ar e in tr od uced , imp leme nt ed a n d cla ssifi ed in t wo
layer s,th ebasicskillsan dthehighlevelskills.Int hesecondla yer,
a t wop ha se mech an ism fo r d ecision ma king is int rod u ced. I n
p ha seo ne, some u sefu l meth ods a re implem ent ed whi ch ch eck
th e a gent ’ssit u ati on for p erf orm ing r equ ir ed ski lls. In t he n ext
p ha se, t he t eam str a teg y,t eam for ma tio n, a gen t’s r ole a nd th e
agen t’sposition ingsystemareintrodu ced.Afuzzylogicalap proa ch
is emp loyed to r ecogn izet he tea m str a te gy a nd fu rt h er more t o
tell th e pl ayer th e b est p ositi on t o move.A t la st, we comp ri sed
our imp lemen ted alg orit hm in th e Rob ocup Soccer Simu lat ion
3D en v ir o n me n t a n d r e su l ts sh o wed t h e e ff i cie n cy o f t h e
in tro du ced met hod ology.
Keywords—
M ul tiA gen t syste ms, M a ch in e lea r n in g, Ar t ific ial
in t e ll ig en ce , R e in f or c em en t l ea r n i n g , F u zzy L o gi c, F u zzy
re infor cemen t lear n ing , Rob oCu p soccer simu lat ion.
Resumen
—E n este a r tícu los e pr esent a u n n u evomét odo d ifu so
hib r ido pa r a la t oma d ed ecisiones yselección d ea cciones de u n
ag ent ee n u n a mbi ent ed e simu lación de f út bol 3 D. Pr imer o, se
introd ucen, implementa ny clasifican las competenciasdel agente
en d os ca p a s: com p ete nc ia s b á si ca s y com pe te n cia s d e n ivel
sup erior. E n la segund a cap a se int rod uce un mecan ismod e dos
fa sesp a r a la t oma d e decision es.E n l a pr imer a fa se,se a plica n
a lgun os mét od os út iles qu e p er mit en ver ifica r la situ ac ión d el
ag ente p ar a la ejecu ción de la scomp eten cias r equ eri das .E n la
siguien te fase, se ad iciona n la est ra tegia y forma ción d eleq uip o,
y elr ol y sistema d e posición d e losa gen tes. Se emplea la lógica
KhashayarNikiMaleki
1
,MohammadHadiValipour
1
,RoohollahYeylaghiAshrafi
1
,SadeghMokari
1
,M.R.Jamali
1,2
,CaroLucas
2
1.DepartmentofElectricalandComputerEngineering,ShahidRajaeeUniversity,Tehran,Iran
2.ControlandIntelligentProcessingCenterofExcellence,SchoolofElectricalandComputerEngineering,
UniversityofTehran,Tehran,Iran
{kh.niki,m.h.valipour,r.yeylaghi,s.mokari}@sru.ac.ir, m.jamali@ece.ut.ac.ir,lucas@ut.ac.ir
I. I NT RO D UC T IO N
R
obocupiscontinuingAIresearchinitiativethatusesthe
gameofsoccerasaunifyingandmotivatingdomain[1,
2]. T he Robocup si mulati on comp etition pits team s of 11
independentlycontrolledautonomousagentsagainsteachother
inRobocupsimulator,orSoccerServer,arealtime,dynamic
environment[3].TheonlyRobocupsoccersimulatorusedto
be«2D»foryears,manyresearchesinAIhaveperformedin
tha t full cha llengin g envir onment for functiona lity of the
developedalgorithminamultiagentenvironment[4].Butas
ithasbeensetbyRoboCupFederation[RoboCup,2004], the
ultimategoalcanbeexpressedbyseveraldiscussion.«Bymid
21stcentury,ateamoffullyautonomoushumanoidrobotsoccer
playersshallwinasoccergame,complyingwith theofficial
rulesoftheFIFA,againstthewinnerofthemostrecentworld
difu sapa r ar econocerla estr a tegia deeq uipo yad emásin dicar le
aljugador, lamejor p osiciónpa r amover se.Porúltimo,seincluye
el alg orit mo implemen ta d o en el a mbien te 3D d e Simu lación de
Fú tb olRoboCupylosresulta dosque demuestr a nla eficiencia de
la met odología int ro du cida .
Pa labra sClave
—Sistemasmu ltia gente,Ap rend izaje demá quina,
In telig encia a r tif icial , Ref uer zo d el a pr en diza je, L ógica d ifu sa ,
Refu er zo del ap r end izaj ed ifu so,Simu lación de fú tb olR oboC up .
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
110
cupforhumanplayers.»[Kitano&Asada,1998]Sotherewasa
needforamorerealisticplatformratherthantheprevious2D
environmentwhichismorefamiliarwithrealsoccergame.That
leadedtoRobocup3DSoccerSimulator.
AstheoptimalscoringproblemiswellsuitedforMachine
Learn ing (ML) t echniques [ 5], Nowadays m any powerful
methodswithdifferentroots,hasbeenintroducedinMLsuch
as: neural networks [5], genetic algorithms [6], genetic
programming[6], fuzzylogic[7],coordinationgraphs[8,9]
andalsomanyhybridapproachesasacombination ofsome
aforementionedones[4]MLtechniqueshavebeenappliedto
a variety of problems in cl uding data min ing , patt er n
recognition , classification problems, e.g. roa d condition
classifier [Ferdowsizadeh, 2004], adaptive control, robot
control,combinatorialoptimizationandgameplaying.There
arelotsofpublicationsinapplyingthesemethodsinRoboCup
Soccer Si mul ated tea ms mostl y in 2D (and NO T 3D)
environment[1,2, 3,4,5,6,8,and9](therearemuchmore
thanreferencedresearches).Itmayhavedifferentreasons,but
havingproblemwithlowlevelskillsthatleadstodisabilityin
controlling agent s, complica ted dynamics which makes
predictionsnottoworkwellandavastrangeofperformingsoccer
skills in comparisonwith2D simulatedenvironmentfor sure
arethemostimportanteffectingfactors.Therearenewfeatures
and also limitations in this environment which make some
distinctions in decision making process. (For more detailed
informationyoucanreferto[10,11])
In this paper a newmeth odology for decision making i n
Rob oCup s occe r s imul ated 3D envi ron ment wit h a ll
abovement ioned problem s consid erat ion is introduced.
Implementationofrealsoccerskillsintwolayersandutilizing
both fuzzy and non fuzzy algorith ms in different layers of
decisionmakingaretheessentialkeysfortheaccomplishment
of this system. Section two reviews the state of ar t of thi s
methodologyinordertoapplyitindecisionmakingprocess.In
thissectionthebasicskillsandtheirfunctionalityandalsosome
ofsoccer(highlevel)skillsareintroducedand classified.The
firstlayerofdecisionmakingprocessisdiscussedinsectionthree
andthesecondlayerinsectionfour.Sectionfivecomprisesour
resultswhichareimplementedonScorpiusSoccerSimulation
Team
1 andfinallysectionsixconcludesthepaper.
II .LAYERSOF SK ILL S ANDDEC ISIO NMAKI NG PR OCE SS
In t he proposed meth odology some applica ble skill s are
introduced and the decision makin g policy i sdeveloped by
consideringthefeaturesandlimitationsofthisenvironment.
Theskillsareclassifiedintwolayers,inthefirstlayerthere
arethesimpleactionswhicharealreadyimplementedbyserver
(basic skills) and in the second layer the a ctions are more
complicatedand sometimesa combination of«basicskills»
are used (highlevel skills). Besides, th e decision making
processhastwosteps;firststepconsiderstheagent’sabilities
ofperformingahighlevelskillaccordingtohiscircumstances
and the secon dstep con siders the agen tpositioning and
choosingthebestactionregardingtothefirststepresults.
A.Basicskills
Thebasicskillsaredefinedastheactions,whicharealready
implemented by server [10, 11]. They can be employed by
sending the pr oper comma nds to soccer s erver
2
. Th ese
commandsare:
∙
A(drive x y z)
: movesthe agent by applying the force
vector(x,y,z)tocenterofit.
∙
A(kickalphaf)
:agentkickstheballbyapplyingtheforce
f
withtheangle
alpha
toitiftheballisinkickabledistance.
∙
A(pantiltangle1angle2)
:Thiscommandchangestheview
directi on of an agen t where «angle1»a nd «angle2» a re
changes(indegrees)ofthepanandtiltangle,respectively.
∙
A(say(«say message here»))
:sends a message to all the
playersthatarelocatedin50meterfromsender.
∙
A(catch)
:(forgoalkeeperonly)holdsandfreezestheball
iftheballisinthecatchablearea.
(See [ 10, 12 ] for mor e detai led in format ion about the
commands)
B.Highlevelskills
High level ski lls ar e those in which th e world m odel
3
informationandthebasicskillsarebeingapplied.Theseskills
consistoftheactionswithballlike:pass, shoot,dribble,etc.
andactionswithoutballlike:mark,findobjectandinformation
broadcasting.
1)Actionswithball
Toperformtheseactions,basicallyweneedsomeinformation
abouttheballtreats,whenaforcewithaparticularangleis
applied,consideringtheenvironmentparameters(e.g.airforce,
friction,collision,etc).Anumberofcomplicatedmechanical
formulascouldhelptopredicttheballmovements(Figure1
showstheball predictedmotionincomparisonwiththereal
ballpositioninformationgivenfromthemonitor
4
).Someof
themostapplicableskillswithballareasfollows:
1. htt p://www.scorpius.ir
2. These skillsare implemented in rcsoccersim3D_0.5 .5
3. World Modelis a data bank in wh ich the information about the
environment is stored
4.Wewrotea programtoparsethemonitorlogfile.Weassumethat
thisinformationisthemostaccurateonewe mayhavefromwhat
really happens in server.
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment – Malekiet al111
∙
Shoot
Shootingforsureisthemostimportantskillinsoccerand
allotherskillslikepass,dribble,etcarebasedonit.Aplayer
inthisenvironmentcanonlykicktheballinfrontofhimself,
soheneedstogetbehindballinacorrectpositiontoshootthe
ballinhisdesireddirection(seeFigure4).
∙
Pass
The agent kick st he ball so that the othe r teammate can
receiveit.Thiscanbeasimpledefinitionfortheskill«pass».
As this skill can be usedi n different situations, the
type
is
definedforit.Wehavethreekindsofpass:
1.Securepass
:Theplayeriscompletelysurethat this
pass will arr ive to the player h e wishes. The most
popularusageofthistypeofpassiswhentheballisin
dangerzone
5
.
2.Normalpass
:theprobabilityofsuccessinpassismore
thanitsfailure.Mostlyusedinthemiddleofthefield.
3.Riskypass
:In thiscase,theprobabilityofballarrival
exists, but the possibility of failure is more than its
success.T his type is used in order to create a good
situationforteam.
∙
Dribble(runwithball)
Theagentusuallyusestheskill«dribble»whenheownsthe
ballinanalmostfreespaceandcan’tfindtheotheragentswith
betterpositionsorcan’tpassthemtheball(seeFigure7b).
∙ Clearball
Thisisanactionthatagentchoosestodo,whenheownsthe
ball an d can per form no other a ction or the pla yer is i n
dangeroussituation, mostlyhappens in
defense
.Depending
ontheoccurredcircumstance,theagentmaykicktheballout
ofthefield,towardtheopponentgoalorotherpositions.
5.Dangerzone isdefinedinfuzzymemberfunction(see Fig.4)
Figure1.Thecomparisonbetweenthemechanicalformulausedforball
motionpredictionandtherealdatagivenfromthemonitor.
2)Actionswithoutball
Theseskillsmakeagentstobearrangedinpositionssothat
theywouldhavethemostchancetocreateopportunitiesfor
teamortogettheopponentsopportunities.
∙
Mark
Markskillapproachestwopurposes:
1.Nottolettheballreachestheopponents(markplayer).
2.Nottolettheopponentsshoottotheirdesiredposition
(markball).
Accordingtothepurposetheplayergetsneartotheopponent
uptothe
MarkSecureDistance
andmarkshim.
∙
Pantilt(objectfindingskill)
Theagentusesthisskilltofindanobjectand/ortoupdate
hisworldmodel.Therearetwodifferentconditions:
1. The agent seesan object butwants to keep it in the
centerofhisvisionnottoletthatobjectgetsoutsight
easily.Thisusuallyhappensforballbecauseitslocation
variesveryfastandeasilymayget outoftheagent’s
sight(Figure2).
2.Theagentdoesn’tseethe object;inthiscasehepans
with
MaxPanAngle
withthedirectioninwhichthelast
timethatobjectwasseen.
∙
Say(informationbroadcastingoralertingskill)
Thisskillisbeingusedforalerting theagents and alsoto
updatetheirworldmodels.Dependingonhowmanycharacters
percycleanagentcantalk,hecanusetheminordertoupdate
theotheragents’worldmodels.Oneofthemostrecommended
usagesofthis skillis utilizedin mark.Whenthedefenders
«
markball
»theopponentstheydonotseetheopponentswhich
are marked. Sotheyneedtochange their viewineach few
cycles,butwhentheballgetsneartheymayfocusonballand
forgetabouttheagent.In thiscaseorsimilareventswecan
usesayskilltoupdateandalsoalerttheagents.Figure2shows
thisevent.
Figure2. Thegoalkeepersaysamessagetoupdatethedefendersworldmodel.
Theycan’tseetheopponents’displacementbehindthem.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
112
II I.DECISI ON MAK INGPH ASE1
In t his pha se, the ag ent ability of per forming an action
accordin g to the en vironment situation (e.g. opponents’
positions/speed,ballposition/speedandtheirpredictedstates)
istestedbyDecisionMakers(DM) toconfirmifthataction
can be done by the agent in that condition. Some of these
decisionmakersareexplainedbelow:
∙
DMforshootingtoaposition
Todetermineifanagentcanshoottoapositionornot,firstthe
agentcalculatestheminimumdegree,forshooting,ifthedegree
couldbefoundlessthan
MaxKickDegree
thentriestofindan
anglebetweenmindegreeand
MaxKickDegree
andaforceless
than
MaxKickForce
.Iftheangleandaforcefoundwiththese
propertiestheDMreturns
true
,otherwiseitreturns
false
.
Figure3.Shootingtoapositionrequiresminimumangleátobelessthan(
MaxKick
Angle
)andminimumdistance
d
lessthan
(MaxKickDistance)
∙
DMforShoottogoal
First,theagentquantizesthegoal, to
n
discrete positions.
Foreachpositionfirstchecksthe
Shoottoposition
conditions,
iftheresultistruethenchecksthefollowingcondition:
Let Tbbe the time takes ball to meett he target with the
maximum speed, an dT r be the rotati on time for the ball
controllertoadjustit’spositionbesidetheball.Tgrepresents
thetimetakesgoalietocatchtheball(Figure4).Havingcalculated
theabovethreeparameterswedefine
Dt
asfollowing[7]:
)(
TrTbTgt
+ - = D(1)
Figure4.Thetimeintervalsneededforpredictioncalculationappliedinshoot
togoaldecisionmaker.
Thesignof
Dt
showsiftheagentcanshoottothatposition
ornot.
DMforpa ss
ThisDMgetstheballpositionandthepassreceiverasinput
parameters.toknowwheretousewhichtypeweimplemented
afuzzyalgorithm.Thisfuzzyalgorithmaccordingtotheball
positionandtheplayersituationtellsus which typeis more
properandalsogivesthe
MaxAllowedPassError
:
Figure5.Fuzzyinputmemberfunctions;a.ballpositioninputvariable
b.passreceiversituationinputvariable
a
b
Fuzzyrulebaseforpassisasfollows:
1.If(positionisDanger)then(passtypeisSecure).
2.If(positionisSafe)and(situationisBad)then(passtypeis
Secure).
3. If(position is Safe) and (situation is Normal) then (pass
typeisNormal).
4.If(positionisSafe)and(situationisGood)then(passtype
isRisky).
5.If(positionisRisk)and(situationisBad)then(passtypeis
Secure).
6.If(positionisRisk)and (situationisNormal) then(pass
typeisNormal).
7.If(positionisRisk)and(situationisGood)then(passtype
isRisky).
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment – Malekiet al113
Figure6.Therelationshipbetweenballpositionpassreceiversituationand
MaxPassError
accordingtothefuzzyalgorithm.
Afterthepasstypeand
MaxPassError
becamedetermined,
agentcheckshisabilityforperformingthistypeofpass.
Firsttheagentchecksifhe
canshootto
thepasspositionor
notthentheamountofriskwillbecalculated.Thefollowing
factorshavetobecheckedinordertocalculatetheriskofpass:
1. Opponentsaroundtheball
2. Therelativeagentpositionwithball.
3. Themaxerrorforgettingpositionbehindtheball
4. The position of opponents around the player we want to
passto,andtheirdistanceswithhim.
5. Theballpath
Let
t1
bethetimetakesplayertogetpositionbehindball.It
dependsonfactors1,2,and3whichvarywithpasstype,and
t2
bethetimetakesforopponentstoreachtheball,theplayer
canpass
when
t1
islessthan
t2
.(SeeFigure7.a)
Let
t(i)
bethetimetakesforopponent
i
tointercepttheball
consideringtheballheightfromthefieldatposition
p(i)
with
error
E1
,and
t1(i)
isthetimetakesforballtoreach
p(i)
with
error
E2
,where
E1
and
E2
varywithpasstype.If
t1(i)<t(i)
forall
i
opponentsthenplayer
canpass
.Andthelastfactoris
whenthetargetplayer,getstheball.Hemusthave
SecureTime
(t5inFigure7.a)tocontroltheball,which varieswithpass
type.Nowwiththeamountofrisk,theplayercandetermine
whetherhecanpasswithrequestedtypeornot.
a
Figure7.a. Player1 wants topass toplayer2, b. d1isthe Secure
DribbleDistance and á is the Secure dribble angle
b
∙
DMforDribble
Todetermineifitissafeenoughforplayertodribble(run
withball)
First,theplayerdrawsaconewith
SecureDribbleAngle
in
frontofhimself,ThenhechecksIfthereisnoopponentwith
distancelessthanorequalwith
SecureDribbleDistance
inside
theconesubsequentlyhepredictstheballpositionafterkick
whentheballspeedislessthan
MaxBallControllableSpeed
letittaket1,nexthepredictstheopponent playersplusthe
agenthimselfpositionsaftert1,assumingthattheymoveto
theballpredictedpositionwiththeir
MaxSpeed
.Ifthenearest
playertotheballaftert1isthe agenthimselfthen the DM
returnstrue,otherwisereturnsfalse(Figure7.b).
∙
FindOpponenttomark(DMformarking)
Theplayersearcheshisstrategicarea(seesectionVformore
details)for
not marked
opponents, if there werem oret han
oneopponent,andthenchecksthepossibilityofmarkingeach
opponent. Thi s possibility ma y have th e same factors we
representedin
canpass
function.Atlast,playercandetermine
thebestplayertomark.
IV.DEC I SIO NM AKING PHASE 2
Themajorissueswehaveaddressedinthis phase are the
static assignment of roles and dynami c team strategy. We
adopteda formation/rolesystemsimilar toone describedin
[13,14,and15]eachformationcontains:
•
Formation name
: Like real soccer team formations (e.g.
4_4_2)
•
Str ategic area
: Th e area in which the pla yer is mostly
supposedtobe.
•
Centerofstrategicarea
:alsoknownasthehomeposition
•
Playerrole
:weintroduced4applicablerolesforagents:
goalkeeper,defender,halfbackerandattacker.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
114
Inthismethodologytheplayerroleisstaticallyassignedto
theplayeraccordingtohisplayernumber,buttheteamstrategy
varieswithdifferentfactors.Themostimportantfactoristhe
ballposition.Accordingtothischangesinstrategythestrategic
areaoftheplayer,changes.Toselecttheappropriatestrategy
wedevelopeda fuzzyalgorithm (Figure8). Inadditionthis
algorithmhelpsanagenttofindouttheproperdistancewith
ballaccordingtohisstrategicarea(Figure9.).
Figure8.Fuzzymemberfunctionforselectingstrategy;a.outputvariable
stra tegy
b.inputvariable
ballPosition
Fuzzyrulebaseforstrategyisasfollows:
1.If(BallPositionisSec1)then(strategyisDanger)
2.If(BallPositionisSec2)then(strategyisCareful)
3.If(BallPositionisSec3)then(strategyisAttack)
4.If(BallPositionisSec4)then(strategyisGoodToGoal)
Figure9.Therelationshipbetweenballpositionanda
halfback
player
strategicpositioninfuzzyalgorithm.
a
b
Dependingontheagent’steamortheopponents’teamowns
theball(seesec. IV.
B
.)the output variable strategy(Figure
8. a) of fu zzy fun ction m ay chan ge. T he la st r emain ing
conditioniswhentheagentownstheball(seesec.IV.
A
.),in
this state agent usesthephase1decisionmaking results to
performanappropriateoperation(Figure10).
Figure10.Thediagramforactionselectionwhenplayersowntheball
A.Whoisthenearestplayertoball?
Afunctionisimplementedthatpredictstheballpositionafter
itsspeedislessthanorequalwith
MaxBallControllableSpeed
,
Thenreturnstheplayerwhoistheclosesttothatposition.
B.Whichteamownstheball?
Anotherfunctionisimplementedtocheckiftheballspeedis
lessthan
MaxBallControllableSpeed
then callsthe
Nearest
Pla yer t o ball
function, if th e player team side which th is
function r eturns, was t he same of ours, then t his function
returns 1 otherwisereturns0,Butiftheball speedismore
Asimplemethod fordecision making inRoboCup soccersimulation 3D environment – Malekiet al115
thanthevaluementionedabove,thenthisfunctionreturns1,
thatmeanswecannotdeterminewhetherballisoursornot.
V. RE SULT S
Weimplemented this meth odology on Scorpius Soccer
SimulationTeam.Astherearenotmanysourcecodesand/or
binariesof3Dteamsadoptivewithlatestchangesofserver
6
,
wedecidedtocompare thisteamwithitspreviousversion
7
.
Theresultsshowedthesuccessofthismethodology;theteam
performance in coordination an d collaboration h ighly
improved, in fact the players switched th eir strategic area
smoothlyastheteamstrategychangedinareasonablemanner,
the agents ca rried out th e high level ski lls much more
efficientlyandatlastthefinalresultsenhancedsignificantly
(Table1.Showsthefinalmatchresults).
VI.C ONC L USION
Inthispaper,anewmethodfordecisionmakinginRoboCup
soccer 3Dsimulation environmenthas beenproposed.First
an id ent ifica tion ap pli ed t o the Robocup Soccer 3D
environment whichledtomechanicalformulas,thensoccer
skillswereintroducedandclassifiedindifferentlayersthena
twophase mechanism for decision making is presented, in
this mechan ism both fuzzy and nonfuzzy algor ithms are
appliedand finallytheproposedmethodologyimplemented
onaRobocupsoccersimulationteamandtheresultsshowed
theefficiencyofthismethodology.
ACK NOWLE DG EM ENT
AuthorsexpressthankstoMr.S.MahdiHosseinifromthe
ECEdepartment,UniversityofTheran,fortheideas,which
oneswereusedatwritingarticle.
RE FE RENC ES
[1]StoneP.andMcAllester,D.,2001.AnArchitectureforActionSelectionin
RoboticSoccer.
AGENTS’01,
Montr´eal,Quebec,Canada.
[2]Veloso,M.,Pagello,E.andKitano,H.,editors,2000.RoboCup99:Robot
SoccerWorldCupIII,SpringerVerlag,Brelin.
[3]Noda,I.,Matsubara,H.,Hiraki,K.andFrank,I.,1998.Soccerserver:Atool
forresearchonmultiAgentsystems,AppliedArtificialIntelligence,12:pp.
233250.
6.The simu lation env ironme nt used for experimental results is
:rcsoccersim3D.0.5.5
7. This version wa sso similar to which placed 6t h in Iran Open
2006 In ternationalRobocup Competitions.
[4] Alireza F. Naeeni, 2004 .Advanced MultiAgent Fuzzy Reinforcement
Lear ning. D EGR EE PROJ ECT Compu ter Eng ineeri ng, Hogs kola n
Dal ama u niversi ty Pre ss.
[5] Dezfou lian, M. H. ,Ka viani, N. , Nikanja m,A. a nd RafaieJok andan,
M., 2 005 . Trai ning a Si mula ted Socce rA gent how to Shoot u sing
Artifi cial Neura l Net works. P roceedi ng of the I rania n Resea rchers
Confe rence in Eu rop e.
[6] Mal ec, J. and Go rbet, R., 2 003 . Ath esis for Maste r of Sci ence in
Engin eering Physi cs. Lund u niversit y Press, Sweden .
[7] Mozafa ri, M., Fard, A. M., Salma ni,V. and Naghibzadeh, M ., 2006.
An Improved Fuzzy Mechanism for 3D Soccer Player Agent’sShoot
Skill. IE EE INDICON , New Delhi, India.
[8] Kok, J. R., Vlassis, N. and Groen, F., 2003. UvATrilearn 200 3Team
Desc ript ion. Robot Socce r World Cup V, LN AI, S prin ger Verla g,
Berlin.
[9] Guestrin, C., Venkatara man, S. and Koller,D., 2 002. Context speci¯c
mu ltia gent coor dina tion and plan ning with fact ored MDPs. I n
Pro ceedi ngs of th e Ei ghtee nth Na tiona l C onfer ence on Ar tific ial
Int ellig ence, Edmon ton, Cana da.
[10] RoboCu pS occerSer ver3 D maintenance group, 200 3. The RoboCup
Socce r Simu lator Manu al. h ttp:/ /sserver. source forge.ne t.
[11] Reis,L. P.and Lau, N., 2003 .RoboCup 3D Simulator FCPortu gal
user ’s guide, http: //www.ieeta .pt/r obocu p/archi ve.htm .
[12] RoboCu p Soccer Server 3 D maint enance grou p, 200 3. Text instea d
of M anua l, h ttp:/ /sser ver.sou rcef orge.ne t.
[13 ] Cast elpietr a, C., locchi, L ., Nard i, D., P iaggio , M., Sca lzo, A. and
sgor bissa , A., 2 00 0. C oordi nat ion a mong Hete rogen eous Rob otic
Soccer Playe rs, In Pr oc. of Int ernat ional C onference o n Intel ligent
Robots a nd Systems (IR OS 20 00), Vol. 2 pp. 13 8513 90.
[14 ] Stone P., and Veloso M., 1 99 9. Task decomposi tion, dynami c role
assignment and lowb andwidthcommu nication forr eal time strategic
team wo rk. An Artifi cial I ntelli gence 11 0(2) , pp. 2 1127 5.
[15] Stone, P.a ndVeloso, M., 1998. Individua la ndcolla borativebehavior
in a tea m ofh omogeneous robot ic soccer agent. I n Proc. Of the 3
rd
int erna tiona l con feren ce on mu lt i agen t syst em.
K hash aya r N iki M aleki is B.Sc. student in Co mputer
Hardwa re Engineering in Depa rtment of Electrical an d
Compu ter E ngine ering, S hahi d Raj ae e Univer sity,
Tehran , Iran . He is a mem ber of Scor pius Simu latio n
Tea m, whi ch ha s particip at ed in ma ny Robocup
compet ition s. He is IEE E/ACM stud ent memb er. His
inter ested resea rch area s are mu lt i agent sy stems,
rein forcemen t lear ning a nd Syst em Ident ificat ion a nd
prog rammin g for emb edded syst ems.
M oha m ma d H a di Valip ou r rec eived the B.Sc . degree
in I nformatio n Technology Engin eering from
Depa rt ment o f Elec trica l a nd Co mpu ter E ngine erin g,
Shahid Rajaee University,Tehran, Iran in 20 08. He is a
member of Scorpiu s S imul at io n Te am , wh ich h as
parti cipated in ma ny Robocup co mpetitions. Also he is
IEEE/ACMstudent member.His interestedresearchareas
are soft ware archi tecture, agent ori ented progra mming,
communi cation syst ems, and mul ti agent sy stems.
Sad egh M oka r i is B.Sc. student i nCo mputer Har dware
Engin eering i n Depar tment o f Electri cal an d Compu ter
Engineering, Sha hid Rajaee Univ ersity,Tehran, Ir an. He
is a mem ber of Scor pius Si mulat ion Team, whi ch have
partici pated in many Robocup competitions. He is ACM
student member. His inter ested resea rch area s are mul ti
agent systems and artifici al neu ral net works.
RevistaAvancesenSistemaseInformática,Vol.5No.3,Diciembrede2008,Medellín,ISSN16577663
116
Roo h ollah Yey la g h i Ash r af i is B. Sc. student in
Compu te r H ardw ar e E ngine ering in Departmen t of
El ectr ica l and Comp uter Eng ineer ing, Shah id R aja ee
Uni versi ty, Teh ran , Ir an. He i s a m ember of S corp ius
Simulation Te am, wh ich ha ve partici pa te d in ma ny
Robo cup c ompetit ions. He is inter ested i n open sour ce
proje cts and m ulti agent sy stems.
M oh am m ad Re za J am a li re ceived t he B.Sc . degr ee
in C ompu ter Ha rdw are En gine ering from Ami rka bir
Univ ersit y of Tec hnolo gy in 2 00 1. H e got the M .Sc.
degree fro mS hiraz Uni versity in t he field of Artificia l
In tell igenc e in 2 003 . He i s a P h.D. c andi dat e sinc e
2004 under the supervisionof ProfessorLuca sin Centre
of Excell ence for Contr ol and Intel ligent Proc essing at
the De pa rt ment o f El ect ri ca l a nd Compu ter
Engineer ing, Universi ty of Tehran, I ran. He i si nterested i n evoluti onary
algor ithms, multi agent systems and design methodologies in con trol and
aut omati on syst ems. Also he i s the le ader o f Scorp ius Si mula tion t eam
since 2005 .
C ar o L u ca s rec eived the M. Sc. degr ee from the
Uni ver sity of Tehr an, Ira n, i n 19 73 , an d the Ph.D .
degree fr om the Uni versity of Cal ifornia , Berk eley, in
19 76 . He is a Pr ofesso r of C ent re of Exce llen ce fo r
Cont rol and I ntel ligen t Pro cessin g at t he De par tment
of Electr ical a nd Comput er Engin eering, Uni versity of
Tehran, Iran, as well as a R esearch er at the S chool of
Intel li gent S ystem s (SIS), Insti tu te for St udie s in
Theor etical Physics and M athematics (I PM), Tehran, Ira n. He has served
as the Director of SIS (1 99319 97), Cha irman of the ECE Depart menta t
the University of Tehran (1 9861 988), M anaging Editor of theM emories
of the Engin eering Facul ty,Un iversity of Tehran ( 1979 1991 ), Reviewer
of Mat hematica l Reviewers (since 1 987) ,Asso ciate Edi tor of J ournal o f
Intel ligent a nd Fuzzy sy stems (19 921 999 ), and Chairma n of the IE EE,
Ira nS ection (1 990 1992 ). He was a lso a Visiting Associat eP rofessor at
the University of Toronto (summer, 198 91990 ), University of California ,
Ber keley (19 88 198 9) , an Assi stant Profess or a t Gar you nis Un iversi ty
(1 984 19 85 ), Un iver sity o f Ca lifor nia at L os Angel es (1 97 51 976 ), a
Sen ior R esea rch er a t the Int erna tio nal Cent re f or T heor etic al Phys ics
and the In ternati onal Centr e for Genetic En gineering a nd Biotechnol ogy,
bot h in T rie ste, Ita ly, t he I nsti tut e of App lied Mat hema tic s Ch ines e
Aca demy of S cie nce s, H arb in In sti tu te o f El ect ric al T echn olo gy, a
Re sea rch A ssoc ia te a t t he M anu fa ctu ri ng R ese ar ch C orp ora ti on o f
Ontar io, and a Resea rchAssi stant at the Elec tronic Researc h Laborat ory,
University ofCa lifornia, Berkeley. He isth eholder of Patent on «Speaker
Independent Fa rsi Isolated Word Neurore cognizer». His resea rch interests
in clu de bi olog ica l com put ing , com put ati ona l in tel lige nce, unc ert ain
system s, int ellig ent cont rol, n eura l netw orks, mult iagen t syste ms, dat a
mi ning, b us in ess i ntel li ge nc e, fi na ncia l mode li ng and know le dg e
man agem ent. Profe ssor L uca s has s erved as th e Chai rma n of sev eral
In ter nat ion al C onf ere nces . He was the Fo und er o f th e SI S an d ha s
assist ed in foun ding severa l new resea rch org anizat ions and eng ineerin g
disci plines i n Ira n. He i s the re cipient of sever al r esearch gran ts at t he
Unive rsity o fTehr an and SIS.