Importance of fiberoptic bronchoscopy in identifying asthma phenotypes to direct personalized therapy

Divisions of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, University of Colorado Denver, Denver, Colorado, USA.
Current opinion in pulmonary medicine (Impact Factor: 2.76). 01/2013; 19(1):42-8. DOI: 10.1097/MCP.0b013e32835a5bdc
Source: PubMed


This review summarizes the phenotyping of refractory asthma with an emphasis on how direct bronchoscopic observation and analysis of bronchoalveolar lavage (BAL), biopsy, and brushings of the airways helps direct specific personalized therapy. Additional testing used in phenotyping asthmatic patients is reviewed.
Several studies and publications over the past decade have emphasized the importance of phenotyping refractory asthmatic patients to offer a better understanding of the pathobiology of disease. Bronchoscopy is a useful tool in phenotyping asthma with objective data obtained from BAL, endobronchial biopsy, and brushings. Phenotyping asthma with bronchoscopy affords personalized and successful therapy.
By using fiberoptic bronchoscopy, specific asthma phenotypes can be identified: laryngopharyngeal reflux with silent aspiration; subacute bacterial infection; tissue eosinophilia; a combination of two or three of these; and nonspecific. Identifying these phenotypes and personalizing therapy with bronchoscopy leads to improved outcomes.

19 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Bronchial thermoplasty (BT) reduces airway smooth muscle in patients with severe asthma. We developed a novel standardized histologic grading system assessing inflammation and structural remodeling on endobronchial biopsy (EBBx) in severe persistent asthma and evaluated airway structure before and after BT. In addition, we correlated invasive and non-invasive inflammatory markers in severe persistent asthma. Methods: Thirty-three patients with severe persistent asthma underwent bronchoscopy, including bronchoalveolar lavage (BAL) and diagnostic EBBx. The control group (N = 41) underwent EBBx for other clinical indications. Biopsies were graded for airway inflammation and epithelial and submucosal structural features. We also evaluated airway histology in three patients before and after BT. Results: Compared to the control group, patients with severe persistent asthma more often had intraepithelial eosinophils and lymphocytes (67% vs. 17% and 61% vs. 27%; p < .001 and p = .005, respectively) and prominent smooth muscle and goblet cell hyperplasia (88% vs. 29% and 47% vs. 22%, p < .001 and p = .004, respectively). Other features including epithelial denudation and basement membrane thickening were not significantly different. Following BT, airway smooth muscle was no longer prominent due to partial replacement by fibrosis. Increased submucosal eosinophilic inflammation and BAL eosinophilia correlated with exhaled nitric oxide (eNO, p = .05 for both). Conclusions: We developed a clinically applicable standardized histologic grading system which identified structural but not inflammatory changes before and after BT in severe persistent asthmatics. Additionally, we demonstrated that eNO is representative of submucosal eosinophilia in this population. This semi-quantitative assessment will be useful for practicing pathologists assessing EBBx from severe persistent asthma patients for diagnostic and clinical research purposes.
    No preview · Article · Apr 2013 · Journal of Asthma
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is characterized by recurrent and reversible airflow obstruction, which is routinely monitored by history and physical examination, spirometry and home peak flow diaries. As airway inflammation is central to asthma pathogenesis, its monitoring should be part of patient management plans. Fractional exhaled nitric oxide level (FeNO) is the most extensively studied biomarker of airway inflammation, and FeNO references were higher in Chinese (Asians) than Whites. Published evidence was inconclusive as to whether FeNO is a useful management strategy for asthma. Other biomarkers include direct (histamine, methacholine) and indirect (adenosine, hypertonic saline) challenges of bronchial hyperresponsiveness (BHR), induced sputum and exhaled breath condensate (EBC). A management strategy that normalized sputum eosinophils among adult patients resulted in reductions of BHR and asthma exacerbations. However, subsequent adult and pediatric studies failed to replicate these benefits. Asthma phenotypes as defined by inflammatory cell populations in sputum were also not stable over a 12-month period. A recent meta-analysis concluded that induced sputum is not accurate enough to be applied in routine monitoring of childhood asthma. There is poor correlation between biomarkers that reflect different asthma dimensions: spirometry (airway caliber), BHR (airway reactivity) and FeNO or induced sputum (airway inflammation). Lastly, EBC is easily obtained noninvasively by cooling expired air. Many biomarkers ranging from acidity (pH), leukotrienes, aldehydes, cytokines to growth factors have been described. However, significant overlap between groups and technical difficulty in measuring low levels of inflammatory molecules are the major obstacles for EBC research. Metabolomics is an emerging analytical method for EBC biomarkers. In conclusion, both FeNO and induced sputum are useful asthma biomarkers. However, they will only form part of the clinical picture. Longitudinal studies with focused hypotheses and well-designed protocols are needed to establish the roles of these biomarkers in asthma management. The measurement of biomarkers in EBC remains a research tool.
    No preview · Article · Aug 2013 · Therapeutic Advances in Respiratory Disease
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emphysema and asthma are responsible for economic and social burden. Altering the natural course of these diseases is a field of intense research. The National Emphysema Treatment Trial showed that lung volume reduction surgery (LVRS) could significantly reduce both morbidity and mortality in properly selected patients. LVRS is seldom performed, however, due to the high morbidity associated with the surgery. Numerous bronchoscopic interventions have been introduced with the goal of providing the clinical benefits of LVRS without the surgical complications. Thus far, these modalities have not produced the results once hoped. However, through active modification of both technique and patient selection, the role of minimally invasive modalities in the treatment of emphysema continues to evolve. Bronchial thermoplasty (BT) is a method of delivering controlled heat to airway mucosa with the goal of reducing airway smooth muscle mass and hence bronchoconstriction. In patients suffering from asthma who cannot achieve control with standard medical care, BT has been shown to be safe and improves symptoms, with long lasting benefit. BT does not seem to affect traditional markers of asthma severity such as forced expiratory volume in 1 second and questions remain regarding proper patient selection for this therapy and its true physiologic effects. This article is a review of bronchoscopic modalities for emphysema and asthma. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
    No preview · Article · Dec 2014 · Seminars in Respiratory and Critical Care Medicine