The Early Detection Research Network's Specimen Reference Sets: Paving the Way for Rapid Evaluation of Potential Biomarkers

Fred Hutchinson Cancer Research Center, Seattle, WA
Clinical Chemistry (Impact Factor: 7.91). 11/2012; 59(1). DOI: 10.1373/clinchem.2012.185140
Source: PubMed


The mission of the National Cancer Institute's Early Detection Research Network (EDRN) is to identify and validate cancer biomarkers for clinical use. Since its inception, EDRN investigators have learned a great deal about the process of validating biomarkers for clinical use. Translational research requires a broad spectrum of research expertise, and coordinating collaborative activities can be challenging. The EDRN has developed a robust triage and validation system that serves the roles of both "facilitator" and "brake."

The system consists of (a) establishing a reference set of specimens collected under PRoBE (Prospective Specimen Collection Retrospective Blinded Evaluation) design criteria; (b) using the reference set to prevalidate candidate biomarkers before committing to full-scale validation; (c) performing full-scale validation for those markers that pass prevalidation testing; and (d) ensuring that the reference set is sufficiently large in numbers and volumes of sample that it can also be used to study future candidate biomarkers. This system provides rigorous and efficient evaluation of candidate biomarkers and biomarker panels. Reference sets should also be constructed to enable high-quality biomarker-discovery research.

We describe the process of establishing our system in the hope that it will serve as an example of how to validate biomarkers for clinical application. We also hope that this description of the biospecimen reference sets available from the EDRN will encourage the biomarker research community--from academia or industry--to use this resource to advance biomarkers into clinical use.

Full-text preview

Available from:
  • Source
    • "Median follow-up was 6 months. This study, which consisted of 86 subjects, adhered to PRoBE (Feng et al. 2013) and STARD criteria (Bossuyt et al. 2004). All subjects were evaluated in the outpatient Urology clinic. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Recently, several studies have linked CXCL1 expression to bladder cancer (BCa). In this study, we aimed to determine if increased levels of urinary CXCL1 were found in BCa patients. Voided urines from 86 subjects, cancer subjects (n = 43), non-cancer subjects (n = 43) were analyzed. The protein concentration of CXCL1 was assessed by enzyme-linked immunosorbent assay (ELISA). CXCL1 concentration level was normalized using urinary protein and urinary creatinine concentrations. We used the area under the curve of a receiver operating characteristic (AUROC) to investigate the performance of CXCL1 in detecting BCa. Mean urinary concentrations of CXCL1 were significantly higher in subjects with BCa compared to subjects without BCa (179.8 ± 371.7 pg/mg of creatinine vs. 28.2 ± 71.9 pg/mg, respectively p = 0.0009). Urinary CXCL1 possessed a sensitivity of 55.81 %, specificity of 83.72 %, positive predictive value of 77.42 %, negative predictive value of 65.46 %, and an overall accuracy of 69.77 % (AUROC: 0.7015, 95 % CI 0.5903-0.8126). These results indicate that CXCL1 is elevated in BCa when compared to non-cancer subjects, but lacks robustness as a standalone urinary biomarker. Additional studies into CXCL1 may shed more light on the role of CXCL1 in BCa tumorigenesis as well as ramifications of therapeutically targeting CXCL1.
    Full-text · Article · Nov 2015 · SpringerPlus
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomarkers, quantitatively measurable indicators of biological or pathogenic processes, once validated play a critical role in disease diagnostics, the prediction of disease progression, and/or monitoring of the response to treatment. They may also represent drug targets. A number of different methods can be used for biomarker discovery and validation, including proteomics methods, metabolomics, imaging, and genome wide association studies (GWASs) and can be analysed using receiver operating characteristic (ROC) plots. The relative utility of single biomarkers with biomarker panels is discussed, along with paradigms for biomarker development, the latter in the context of three large-scale biomarker consortia, the Critical Path Predictive Safety Testing Consortium (PSTC), the NCI Early Detection Research Network (EDRN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). The importance of systematic optimization of many parameters in biomarker analysis, including validation, reproducibility, study design, statistical analysis and avoidance of bias are critical features used by these consortia. Problems including introduction of bias into study designs, data reporting or data analysis are also reviewed.
    No preview · Article · Aug 2013 · Biochemical pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we summarized the challenges and promises of the study of immune biomarkers. We reviewed key concepts in biomarker discovery and discussed the framework for applying these concepts in the study of the immune system and its effects on the disease – cancer, infection, allergy, immunodeficiencies, and autoimmunity. The immune system plays a special role in biomarker discovery since it interacts with all other systems in the human body and immune biomarkers are relevant for large number of diseases.
    Full-text · Conference Paper · Sep 2013
Show more