DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase

Department of Biology, Brandeis University, Волтам, Massachusetts, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 11/2012; 110(1). DOI: 10.1073/pnas.1218065109
Source: PubMed


Budding yeast cells suffering a single unrepaired double-strand break (DSB) trigger the Mec1 (ATR)-dependent DNA damage response that causes them to arrest before anaphase for 12-15 h. Here we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both Esp1 and Pds1. Transient relocalization of Pds1 is also seen in wild-type cells lacking vacuolar protease activity after induction of a DSB. Arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes. Permanent arrest can be overcome by blocking autophagy, by deleting the vacuolar protease Prb1, or by driving Esp1 into the nucleus with a SV40 nuclear localization signal. Autophagy in response to DNA damage can be induced in three different ways: by deleting the Golgi-associated retrograde protein complex (GARP), by adding rapamycin, or by overexpression of a dominant ATG13-8SA mutation.

Download full-text


Available from: Vinay Eapen
    • "Autophagy has also been shown to influence the dynamics of DNA repair wherein it helps in recycling of key proteins involved in the processing of lesions; besides aiding the metabolic precursors for the generation of ATP as well as regulating the supply of dNTPs required for repair[137,138]. Studies carried out in yeast have shown that activation of autophagy following the induction of DSBs results in anaphase arrest, which persists till autophagy is blocked or vacuolar proteolysis is inhibited suggesting that DDR-induced autophagic process may also contribute to cytotoxicity[130,139]. Two essential proteins, p53 and ATM, serve as connecting links between radiation-induced DDR and autophagy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an evolutionary conserved, indispensable, lysosome-mediated degradation process, which helps in maintaining homeostasis during various cellular traumas. During stress, a context-dependent role of autophagy has been observed which drives the cell towards survival or death depending upon the type, time, and extent of the damage. The process of autophagy is stimulated during various cellular insults, e.g. oxidative stress, endoplasmic reticulum stress, imbalances in calcium homeostasis, and altered mitochondrial potential. Ionizing radiation causes ROS-dependent as well as ROS-independent damage in cells that involve macromolecular (mainly DNA) damage, as well as ER stress induction, both capable of inducing autophagy. This review summarizes the current understanding on the roles of oxidative stress, ER stress, DNA damage, altered mitochondrial potential, and calcium imbalance in radiation-induced autophagy as well as the merits and limitations of targeting autophagy as an approach for radioprotection and radiosensitization.
    No preview · Article · Jan 2016 · Free Radical Research
  • Source
    • "Analysis of DNA content demonstrated that rapamycin prevented adaptation even in the absence of autophagy (Figure 3C). Consistent with the notion that autophagy induction is not required to maintain Rad53 phosphorylation (Dotiwala et al., 2013), Rad53 dephosphorylation was still prevented by rapamycin in cdc13-1 atg5 cells (Figure 3D). Rapamycin impaired both Clb2 degradation and Sic1 accumulation in the presence and absence of autophagy when prolonged telomere dysfunction was induced (Figure 3D). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells challenged with DNA damage activate checkpoints to arrest the cell cycle and allow time for repair. Successful repair coupled to subsequent checkpoint inactivation is referred to as recovery. When DNA damage cannot be repaired, a choice between permanent arrest and cycling in the presence of damage (checkpoint adaptation) must be made. While permanent arrest jeopardizes future lineages, continued proliferation is associated with the risk of genome instability. We demonstrate that nutritional signaling through target of rapamycin complex 1 (TORC1) influences the outcome of this decision. Rapamycin-mediated TORC1 inhibition prevents checkpoint adaptation via both Cdc5 inactivation and autophagy induction. Preventing adaptation results in increased cell viability and hence proliferative potential. In accordance, the ability of rapamycin to increase longevity is dependent upon the DNA damage checkpoint. The crosstalk between TORC1 and the DNA damage checkpoint may have important implications in terms of therapeutic alternatives for diseases associated with genome instability.
    Full-text · Article · Sep 2014 · Cell Reports
  • Source
    • "We also obtain data consistent with partial (but not exclusive) localization of PfATG8 to the apicoplast for control late trophozoites/early schizonts, by co – staining for apicoplast – specific PfACP protein (see Fig. S1). We note that the trophozoite (feeding) and schizont (nuclear division/parasite replication) stages of parasite development would be expected to utilize autophagy machinery in different ways [48], [49] and that further study of PfATG8 in trophozoites vs schizonts is warranted. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQR(CS)) as quantified by CQ IC50 shift, account for only 10-20% of cytocidal CQR (CQR(CC)) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQR(CS) vs CQR(CC) phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQR(CC), leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQR(CC). Taken together, the data show that an unusual autophagy - like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQR(CC) phenotype.
    Full-text · Article · Nov 2013 · PLoS ONE
Show more