Article

Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells

Journal of Neuroinflammation (Impact Factor: 5.41). 11/2012; 9(1):252. DOI: 10.1186/1742-2094-9-252
Source: PubMed

ABSTRACT

Background
Interleukin-1beta (IL-1β) is a pro-inflammatory cytokine that can be produced in the central nervous system during inflammatory conditions. We have previously shown that IL-1β expression is altered in the rat brain during a morphine tolerant state, indicating that this cytokine may serve as a convergent point between the immune challenge and opiate mediated biological pathways. We hypothesized that IL-1β up-regulates opioid receptors in human astrocytes in both untreated and morphine-desensitized states.

Methods
To test this hypothesis, we compared the basal expression of the mu (MOR), delta (DOR), and kappa (KOR) opioid receptors in the human U87 MG astrocytic cell line to SH-SY5Y neuronal and HL-60 immune cells using absolute quantitative real time RT-PCR (AQ-rt-RT-PCR). To demonstrate that IL-1β induced up-regulation of the MOR, DOR and KOR, U87 MG cells (2 x 105 cells/well) were treated with IL-1β (20 ng/mL or 40 ng/mL), followed by co-treatment with interleukin-1 receptor antagonist protein (IL-1RAP) (400 ng/mL or 400 ng/mL). The above experiment was repeated in the cells desensitized with morphine, where U87 MG cells were pre-treated with 100 nM morphine. The functionality of the MOR in U87 MG cells was then demonstrated using morphine inhibition of forksolin-induced intracellular cAMP, as determined by radioimmunoassay.

Results
U87 MG cells treated with IL-1β for 12 h showed a significant up-regulation of MOR and KOR. DOR expression was also elevated, although not significantly. Treatment with IL-1β also showed a significant up-regulation of the MOR in U87 MG cells desensitized with morphine. Co-treatment with IL-1β and interleukin-1 receptor antagonist protein (IL-1RAP) resulted in a significant decrease in IL-1β-mediated MOR up-regulation.

Conclusion
Our results indicate that the pro-inflammatory cytokine, IL-1β, affects opiate-dependent pathways by up-regulating the expression of the MOR in both untreated and morphine-desensitized U87 MG.

Download full-text

Full-text

Available from: Sulie L Chang, Dec 13, 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immune response is a highly specific reaction carried out by means of specialized cells that belong to the immune system. There are two types of immune response mechanisms aimed towards pathogens: non-specific, innate reactions, and specific, acquired reactions. Acquired immunity, characterized by its specificity, is comprised of lymphocytes, including both T cell and B cell populations. The role of B lymphocytes is not limited to the humoral response, though the cellular immune response is carried out mainly by various T lymphocyte subpopulations. The reactions of the humoral and cellular responses complement and stimulate one another mutually - cytokines are their common linking element. The attachment of cytokines to their specific receptors activates a sequence of signals - either intracellular or between the cells of various systems. This organization of respective connections and reactions, including the functional relations between cells of the immune response, in its complexity, is best described as a cytokine network. The response of the immune system to surgical trauma can be looked at from both a local and a general perspective. Not only surgical trauma caused by tissue damage, however, influences the functioning of the immune system, but also the drugs and techniques used during anesthesia. Our article is a presentation of the effects of medications used in anesthesia with respect to their influence on the cytokine network.
    No preview · Article · Jan 2013 · Postępy Higieny i Medycyny Doświadczalnej (Advances in Hygiene and Experimental Medicine)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
    Full-text · Article · Oct 2013 · Peptides
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
    Full-text · Article · Dec 2014 · Peptides