Progressive Supranuclear Palsy: High-Field-Strength MR Microscopy in the Human Substantia Nigra and Globus Pallidus

Department of Chemical & Biomedical Engineering, Florida State University Florida A&M University-Florida State University College of Engineering and National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr, Tallahassee, FL 32310
Radiology (Impact Factor: 6.87). 11/2012; 266(1). DOI: 10.1148/radiol.12102273
Source: PubMed


To characterize changes in the magnetic resonance (MR) relaxation properties of progressive supranuclear palsy (PSP) and tissue from neurologically normal brains by using high-resolution (21.1-T, 900-MHz) MR microscopy of postmortem human midbrain and basal ganglia.

Materials and methods:
This HIPAA-compliant study was approved by the institutional review board at the Mayo Clinic and informed consent was obtained. Postmortem tissue from age-matched PSP (n = 6) and control (n = 3) brains was imaged by using three-dimensional fast low-angle shot MR imaging with isotropic resolution of 50 μm. Relaxation times and parametric relaxation maps were generated from spin-echo and gradient-recalled-echo sequences. MR findings were correlated with histologic features by evaluating the presence of iron by using Prussian blue and ferritin and microglia burden as determined by a custom-designed color deconvolution algorithm. T2 and T2*, signal intensities, percent pixels (that could not be fitted in a pixel-by-pixel regression analysis due to severe hypointensity), and histologic data (total iron, ferritin, and microglia burden) were statistically analyzed by using independent sample t tests (P < .05).

PSP specimens showed higher iron burden in the cerebral peduncles and substantia nigra than did controls. However, only the putamen was significantly different, and it correlated with a decrease of T2* compared with controls (-48%; P = .043). Similarly, substantia nigra showed a significant decrease of T2* signal in PSP compared with controls (-57%; P = .028). Compared with controls, cerebral peduncles showed increased T2 (38%; P = .026) and T2* (34%; P = .014), as well as higher T2 signal intensity (57%; P = .049). Ferritin immunoreactivity was the opposite from iron burden and was significantly lower compared with controls in the putamen (-74%; P = .025), red nucleus (-61%; P = .018), and entire basal ganglia section (-63%; P = .016).

High-field-strength MR microscopy yielded pronounced differences in substantia nigra and globus pallidus of PSP compared with control brains. Histologic data also suggested that the predominant iron in PSP is hemosiderin, not ferritin. Iron in the brain is a contrast enhancer and potential biomarker for PSP.

Download full-text


Available from: Melissa Erin Murray
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is a matter of debate whether increased brain iron levels are the cause or only the consequence of neurodegenerative process in degenerative parkinsonism. The aim of this study is to characterize disease-related changes in volumes and iron-related R2* values of basal ganglia and thalamus. 13 patients with progressive supranuclear palsy (PSP), 15 with a parkinsonian variant of multiple system atrophy (MSA-p), 29 with Parkinson's disease (PD), and 21 age-matched controls underwent 3-Tesla MRI. The R2* values and volumes were calculated for the selected subcortical structures (caudate nucleus, putamen, globus pallidus, and thalamus) using an automated region-based analysis. Voxel-based analysis was also performed to visualize a topographical correlation of R2* value and volume. The PSP group had significantly higher R2* values in globus pallidus and caudate nucleus (p < 0.05), whereas the MSA-p group had higher R2* values in putamen (p < 0.001) than PD and controls. The globus pallidus in PSP and the putamen in MSA-p were the most significant areas of atrophy to differentiate PSP, MSA-p and PD (AUC = 0.856, 0.832, respectively, p < 0.001). The R2* values in both structures increased in parallel with the extent of atrophy. They were negatively correlated with volumes in putamen (r = -0.777, p < 0.001) and globus pallidus (r = -0.409, p = 0.025) of MSA-p, and globus pallidus (r = -0.4, p = 0.043) of PSP. Voxel-based analysis identified higher R2* values in more severely atrophic sub-regions in these structures. We observed topographical differences of iron deposition as well as atrophy between MSA-p and PSP. Increased iron levels were related to the structural atrophy in basal ganglia. Our results imply that iron accumulation is likely an epiphenomenon of the degenerative process.
    Full-text · Article · May 2013 · Journal of Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases, but the contribution of iron overload to pathology remains unclear. In a group of distinctive brain iron overload diseases known as 'neurodegeneration with brain iron accumulation' (NBIA) diseases, nine disease genes have been identified. Brain iron accumulation is observed in the globus pallidus and other brain regions in NBIA diseases, which are often associated with severe dystonia and gait abnormalities. Only two of these diseases, aceruloplasminaemia and neuroferritinopathy, are directly caused by abnormalities in iron metabolism, mainly in astrocytes and neurons, respectively. Understanding the early molecular pathophysiology of these diseases should aid insights into the role of iron and the design of specific therapeutic approaches.
    No preview · Article · Jul 2013 · Nature Reviews Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2(*) and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders.
    Full-text · Article · Nov 2014 · Frontiers in Human Neuroscience
Show more