The concentrations of Ca, S, Al, Si, Na, and K in the pore solutions of ordinary Portland cement (OPC) and white Portland cement (WPC) pastes were measured during the first 28 days of hydration at room temperature. Saturation indices (SI) with respect to various solid phases known to occur in cement pastes were calculated from a thermodynamic analysis of the elemental concentrations, resulting in
... [Show full abstract] good agreement between the two pastes. In agreement with other published work, gypsum was saturated during the first several hours of hydration and then undersaturated thereafter, while portlandite was modestly supersaturated after the first few hours. High levels of supersaturation with respect to ettringite and calcium monosulfoaluminate were calculated, particularly prior to the consumption of gypsum at around 10 h. Results are consistent with published thermodynamic studies that show calcium monosulfoaluminate is metastable with respect to ettringite under normal hydration conditions. Three different ion activity product (IAP) equations for C-S-H were applied to the data. From 10 h onward, each of the IAP values declined gradually over time and the values for the OPC and WPC pastes were in close agreement. The same IAP equations were applied to experimental data from the pure CaO–SiO2–H2O system, resulting in good agreement between the cement paste pore solutions and the equilibrium between portlandite and the upper, or metastable, C-S-H solubility curve.