Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, College of Veterinary Medicine, 2001 South Lincoln Avenue, Urbana, IL, 61802, United States.
Investigative ophthalmology & visual science (Impact Factor: 3.4). 11/2012; 53(13). DOI: 10.1167/iovs.12-10832
Source: PubMed


Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM-GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation.

Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures.

At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C-rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons.

Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea.

Full-text preview

Available from:
  • Source
    • "GAGs excreted in the urine include eight components: chondroitin sulfate A (C4S), chondroitin sulfate C (C6S), chondroitin (CH), hyaluronic acid (HA), heparan sulfate (HS), dermatan sulfate (DS), heparin (HP), and keratin sulfate (KS) [14–16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The influences of chondroitin sulfate C (C6S) on size, aggregation, sedimentation, and Zeta potential of sub-micron calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystallites with mean sizes of about 330 nm were investigated using an X-ray diffractometer, nanoparticle size Zeta potential analyzer, ultraviolet spectrophotometer, and scanning electron microscope, after which the results were compared with those of micron-grade crystals. C6S inhibited the conversion of COD to COM and the aggregation of COM and COD crystallitesis; it also decreased their sedimentation rate, thus increasing their stability in aqueous solution. The smaller the size of the COD crystallites, the easier they can be converted to COM. The stability of sub-micron COD was worse than that of micron-grade crystals. C6S can inhibit the formation of calcium oxalate stones.
    Full-text · Article · Dec 2013 · Bioinorganic Chemistry and Applications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-D-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation. Copyright © 2014. Published by Elsevier Inc.
    No preview · Article · Dec 2014 · Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Morquio A syndrome (mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by deficient N-acetylgalactosamine-6-sulphatase (GALNS) activity. Early and accurate diagnosis of this condition is critical for improved patient outcomes, particularly as enzyme replacement therapy has recently become available. An LC-MS/MS assay utilising keratan sulphate (KS) disaccharides derived from keratanase-II digestion provides a sensitive and specific means for quantitation of urinary KS, a screening biomarker for Morquio A ([15]; Martell et al., 2012). To ensure a reliable supply of keratanase-II, we sought to produce a B. circulans-derived enzyme via a recombinant approach in E. coli. Bioinformatics analysis of the B. circulans keratanase-II enzyme identified likely dispensable C-terminal domains amenable to enhancement via protein engineering. A truncated form of the enzyme was designed to remove the domains predicted to be unnecessary for catalytic activity and detrimental to recombinant expression in E. coli. C-terminally truncated, recombinant B. circulans keratanase-II was purified to >98% homogeneity and extensively characterised, demonstrating desired activity, specificity and utility in LC-MS-based quantitation of urinary KS from Morquio A and control samples, and is functionally indistinguishable from full-length, native B. circulans-derived keratanase-II. This novel, recombinant keratanase-II meets all performance requirements and can be produced in a rapid and reproducible manner. We speculate that other related bacterial enzymes of biomedical or industrial interest may be amenable to similar engineered enhancements. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Apr 2015 · Clinical biochemistry