Absence of Phosphatidylglycerol (PG) in Respiratory Distress Syndrome in the Newborn

Department of Pediatrics, University of California, San Diego, San Diego, California, United States
Pediatric Research (Impact Factor: 2.31). 05/1977; 11(6):714-720. DOI: 10.1203/00006450-197706000-00003


Phosphatidylglycerol (PG) was absent from lung effluent in 41 infants with respiratory distress syndrome of the newborn (RDS), whereas effluent from healthy control subjects of similar gestational age contained this phospholipid (4.9 ± 2.4% of lipid-phosphorus (P), n = 32). Control infants of 28 weeks of gestation or less with various respiratory disturbances other than RDS also had low PG (0.2 ± 0.2% of lipid-P, n = 5). In RDS surfactant complex often could be isolated from the airways using differential and density gradient centrifugation. The material thus obtained had prominent phosphatidylinositol (PI) (13.6 ± 2.8% of lipid-P, n = 6), but no PG. Of those 18 infants who had such surfactant even in the early stages of RDS, 13 were 35 weeks of gestation or more, 3 were offspring of diabetic mothers, and 2 had severe perinatal asphyxia. In healthy control subjects PG sometimes appeared first within an hour of birth, but in RDS PG did not appear until recovery from RDS.In RDS type II (transient tachypnea of the newborn) PG in lung effluent also was abnormally low (1.3 ± 0.6% of lipid-P, n = 5) and PI was correspondingly prominent (9.7 ± 3.6% of lipid-P, n = 5), indicating immaturity of surfactant similar to RDS.Surfactant with PG and PI has superior surface-active properties compared to that containing PI, but no PG. Surfactant without PG does not seem to stabilize the alveoli of the newborn as well as does surfactant with PG. The failure of PG appearance following birth therefore may precipitate RDS, especially beyond 35 weeks of gestation.Speculation: Pre- and postnatal monitoring of the acidic phospholipids, PG and PI, in lung effluent is useful in diagnosis and follow-up of RDS as well as in evaluation of various therapies.Keywords: Lecithin; phospholipids, acidic; pulmonary surfactant; respiratory distress syndrome

Download full-text


Available from: Mikko Hallman, Nov 11, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fetal lung undergoes extensive physiological and biochemical maturation prior to birth in preparation for its postnatal function as an organ for gas exchange. Pulmonary surfactant, a substance that reduces surface tension and prevents alveolar collapse, is produced by type II pneumocytes within the lung. Reduced ability to produce surfactant leads to neonatal respiratory distress syndrome. Synthesis of the phospholipid component of surfactant, phosphatidylcholine (PC), is stimulated by fibroblast-pneumocyte factor (FPF), a protein expressed by fibroblast cells within the fetal lung. Although its function is well known, the identity of this important protein has remained a mystery. Recent research has suggested that FPF may be neuregulin-1, a growth factor found in many tissues during development. Enhanced synthesis of PC (and therefore detection of FPF) is measured using a tissue culture-based method. Primary cultures of lung fibroblasts and type II pneumocytes are prepared, and fibroblast-conditioned medium (FCM) is exposed to the type II cells. Resultant PC synthesis is measured using radioisotope-labeled PC-precursor and a chloroform-based lipid extraction method. Initial results using this method were very inconsistent, so a study was undertaken to determine which parts of the method could be contributing to this inconsistency. Cell density of type II cultures (measured in mcg DNA.plate-1) was shown to have a significant effect on results. Treatment of fibroblasts with 100 nM dexamethasone and exposure of type II cultures to the resultant FCM caused a mean 9.17% increase in PC synthesis, but when only type II cultures with a cell density below 25 mcg DNA.plate-1 were analyzed, this value increased to 17.56%. Type II cultures with cell density above this threshold value showed a mean increase in synthesis of only 3.39%. The consistent application of [3H]-choline chloride also had a significant effect on results. Experiments utilizing phorbol 12-myristate 13-acetate to stimulate fibroblasts were very inconsistent. The mean activity of the initial [3H]-choline chloride solution prepared for these experiments was found to be 2.04 mcg Ci.mL-1, compared to a mean of 4.79 mcgCi.mL-1 for all other experiments. Observations from this section of the study led to considerable revision of the method used to measure PC synthesis. Quadrupolar ion trap mass spectrometry (MS) was used to analyze FCM and determine if neuregulin-1 (NRG1) could be FPF. A mass spectrum was obtained for recombinant NRG1, with predominant ions of 1068, 1142 and 1246 m/z. All three of these ions were also detected in both control and dexamethasone-treated FCM. Partial fragmentation of 1068 m/z of NRG1 was achieved using MS2, and generated a base peak of 1047 m/z. This fragmentation was also observed in 1068 m/z from FCM. LC/MS was utilized to quantify NRG1 in FCM, using a standard curve generated using recombinant NRG1. Control FCM had a NRG1 concentration of 19.85 mcg.mL-1, while the concentration in dexamethasone treated FCM was 41.59 mcg.mL-1. FCM which had given no positive response to dexamethasone when tested using the indirect cultured cell system had a control NRG1 concentration of 20.85 mcg.mL-1, and a dexamethasone treated concentration of 22.84 mcg.mL-1. These values were not significantly different from the control value for FCM in those fibroblast cultures that had generated a positive response to dexamethasone. Results of this section of the study have provided strong evidence that NRG1 is a major component of FPF, and a review of the NRG1 signaling pathway further supports this conclusion. Insulin-like growth factors (IGFs) are functionally related to neuregulins and are known to be important in fetal development. The effect of IGF-II on synthesis of surfactant PC and its subsequent secretion from type II pneumocytes was studied. In terms of PC synthesis, IGF-II was tested at concentrations of 0.4, 0.6 and 0.8 mcM. The mean increase in synthesis was found to be 6.00, 6.15 and 6.91%, respectively. These values were not significantly different from control values. Secretion of PC was tested over the concentration range of 0.1 to 1.6 mcgM, with no significant effect observed. Possible inhibition by IGF-II was also studied, using the known stimulants of secretion, neuromedin C and isoproterenol. No significant effect on the enhanced level of secretion was observed when IGF-II was added with either secretagogue. Lack of an appropriate receptor and/or the possibility that cultured cells may not exactly mimic the situation in vivo are probably the reasons IGF-II has no effect on either synthesis or secretion.
    Preview · Article ·
  • Source

    Preview · Article ·

  • No preview · Article ·
Show more