Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants

MOBILE GENETIC ELEMENTS 03/2012; 2(2):2. DOI: 10.4161/mge.20375


Lateral gene transfer (LGT) between bacteria constitutes a strong force in prokaryote evolution, transforming the hierarchical tree of life into a network of relationships between species. In contrast, only a few cases of LGT from eukaryotes to prokaryotes have been reported so far. The distal animal intestine is predominantly a bacterial ecosystem, supplying the host with energy from dietary polysaccharides through carbohydrate-active enzymes absent from its genome. It has been suggested that LGT is particularly important for the human microbiota evolution. Here we show evidence for the first eukaryotic gene identified in multiple gut bacterial genomes. We found in the genome sequence of several gut bacteria, a typically eukaryotic glycoside-hydrolase necessary for starch breakdown in plants. The distribution of this gene is patchy in gut bacteria with presence otherwise detected only in a few environmental bacteria.

We speculate that the transfer of this gene to gut bacteria occurred by a sequence of two key LGT events; first, an original eukaryotic gene was transferred probably from Archaeplastida to environmental bacteria specialized in plant polysaccharides degradation and second, the gene was transferred from the environmental bacteria to gut microbes.

Download full-text


Available from: Steven G Ball
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The resident microbiota of the human gastrointestinal (GI) tract is comprised of ~2000 bacterial species, the majority of which are anaerobes. Colonization of the GI tract is important for normal development of the immune system and provides a reservoir of catabolic enzymes that degrade ingested plant polysaccharides. Bacteroides fragilis is an important member of the microbiota because it contributes to T helper cell development, but is also the most frequently isolated Gram-negative anaerobe from clinical infections. During the annotation of the B. fragilis genome sequence, we identified a gene predicted to encode a homolog of the eukaryotic protein modifier, ubiquitin. Previously, ubiquitin had only been found in eukaryotes, indicating the bacterial acquisition as a potential inter-kingdom horizontal gene transfer event. Here we discuss the possible roles of B. fragilis ubiquitin and the implications for health and disease.
    Preview · Article · May 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Horizontal gene transfer (HGT) is considered to be a major force driving the evolutionary history of prokaryotes. HGT is widespread in prokaryotes, contributing to the genomic repertoire of prokaryotic organisms, and is particularly apparent in Rickettsiales genomes. Gene gains from both distantly and closely related organisms play crucial roles in the evolution of bacterial genomes. In this work, we focus on genes transferred from distantly related species into Rickettsiales species. Results We developed an automated approach for the detection of HGT from other organisms (excluding alphaproteobacteria) into Rickettsiales genomes. Our systematic approach consisted of several specialized features including the application of a parsimony method for inferring phyletic patterns followed by blast filter, automated phylogenetic reconstruction and the application of patterns for HGT detection. We identified 42 instances of HGT in 31 complete Rickettsiales genomes, of which 38 were previously unidentified instances of HGT from Anaplasma, Wolbachia, Candidatus Pelagibacter ubique and Rickettsia genomes. Additionally, putative cases with no phylogenetic support were assigned gene ontology terms. Overall, these transfers could be characterized as “rhizome-like”. Conclusions Our analysis provides a comprehensive, systematic approach for the automated detection of HGTs from several complete proteome sequences that can be applied to detect instances of HGT within other genomes of interest.
    Full-text · Article · Dec 2012 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
    Full-text · Article · Jan 2013 · Applied and Environmental Microbiology
Show more