Distinct Regulation of Integrin-Dependent T Cell Conjugate Formation and NF- B Activation by the Adapter Protein ADAP

Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
The Journal of Immunology (Impact Factor: 4.92). 11/2008; 181(7):4840-51. DOI: 10.4049/jimmunol.181.7.4840
Source: PubMed


Following TCR stimulation, T cells utilize the hematopoietic specific adhesion and degranulation-promoting adapter protein (ADAP) to control both integrin adhesive function and NF-kappaB transcription factor activation. We have investigated the molecular basis by which ADAP controls these events in primary murine ADAP(-/-) T cells. Naive DO11.10/ADAP(-/-) T cells show impaired adhesion to OVAp (OVA aa 323-339)-bearing APCs that is restored following reconstitution with wild-type ADAP. Mutational analysis demonstrates that the central proline-rich domain and the C-terminal domain of ADAP are required for rescue of T:APC conjugate formation. The ADAP proline-rich domain is sufficient to bind and stabilize the expression of SKAP55 (Src kinase-associated phosphoprotein of 55 kDa), which is otherwise absent from ADAP(-/-) T cells. Interestingly, forced expression of SKAP55 in the absence of ADAP is insufficient to drive T:APC conjugate formation, demonstrating that both ADAP and SKAP55 are required for optimal LFA-1 function. Additionally, the ADAP proline-rich domain is required for optimal Ag-induced activation of CD69, CD25, and Bcl-x(L), but is not required for assembly of the CARMA1/Bcl10/Malt1 (caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1/B-cell CLL-lymphoma 10/mucosa-associated lymphoid tissue lymphoma translocation protein 1) signaling complex and subsequent TCR-dependent NF-kappaB activity. Our results indicate that ADAP is used downstream of TCR engagement to delineate two distinct molecular programs in which the ADAP/SKAP55 module is required for control of T:APC conjugate formation and functions independently of ADAP/CARMA1-mediated NF-kappaB activation.

Download full-text


Available from: Brandon J Burbach, May 05, 2014
  • Source
    • "Here we objectively collect a large sample size, and use a quantitative score to enumerate IS formation in the conjugates, thus enabling robust statistical analysis of a kinetic response. Quantitative imaging flow cytometry has been used to identify the IS of T cells formed with antigen-coated beads (Burbach et al., 2008), but has not previously been used to monitor the IS formed between cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of T lymphocytes by antigen-presenting cells (APC) results in the formation of an immunological synapse. Following contact with the target cell, key signaling and adhesion molecules polarize within minutes to hours to the T cell-APC interface. Multispectral imaging flow cytometry, a new technology which combines flow cytometry with imaging, was used to visualize and quantify the recruitment of the CD3epsilon and Lck signaling molecules during the evolution of an immune synapse. Using this technology, thousands of T cell/macrophage conjugates could be analyzed for each experimental time point. Following Ca++ triggered T cell activation, the dynamics of Lck and CD3epsilon recruitment to the synapse, analyzed by two independent methods, were comparable. However, CD3epsilon exhibited longer residence times (>8 min) at the synapse than Lck.
    Preview · Article · Jul 2009 · Journal of immunological methods
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NF-kappaB activation following engagement of the antigen-specific T cell receptor involves protein kinase C-theta-dependent assembly of the CARMA1-BCL10-MALT1 (CBM) signalosome, which coordinates downstream activation of IkappaB kinase (IKK). We previously identified a novel role for the adhesion- and degranulation-promoting adapter protein (ADAP) in regulating the assembly of the CBM complex via an interaction of ADAP with CARMA1. In this study, we identify a novel site in ADAP that is critical for association with the TAK1 kinase. ADAP is critical for recruitment of TAK1 and the CBM complex, but not IKK, to protein kinase C-theta. ADAP is not required for TAK1 activation. Although both the TAK1 and the CARMA1 binding sites in ADAP are essential for IkappaB alpha phosphorylation and degradation and NF-kappaB nuclear translocation, only the TAK1 binding site in ADAP is necessary for IKK phosphorylation. In contrast, only the CARMA1 binding site in ADAP is required for ubiquitination of IKKgamma. Thus, distinct sites within ADAP control two key activation responses that are required for NF-kappaB activation in T cells.
    Full-text · Article · Feb 2010 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpha4beta7 integrin promotes homing of T cells to intestinal sites. The alpha4 integrin subunit that pairs with beta7 integrin can also pair with beta1 integrin. In this paper, we show that the preferential pairing of beta1 integrin with alpha4 integrin regulates the expression of alpha4beta7 on T cells. In the absence of beta1 integrin, naive mouse CD4 T cells have increased alpha4beta7 expression, resulting in increased adhesion to mucosal addressin cell adhesion molecule-1 and enhanced homing to Peyer's patches (PP). In a reciprocal manner, overexpression of beta1 integrin causes the loss of alpha4beta7 expression and decreased homing to PP. A similar upregulation of beta1 integrin and suppression of alpha4beta7 expression occurs rapidly after CD4 T cell activation. beta1 integrin thus dominates beta7 integrin for alpha4 integrin pairing, thereby controlling the abundance of unpaired alpha4 integrin. Increasing the abundance of alpha4 integrin relative to beta1 integrin is critical to retinoic acid-mediated expression of alpha4beta7 integrin during T cell activation. In the absence of beta1 integrin, endogenous Ag-specific CD4 T cells uniformly express high levels of alpha4beta7 after Listeria monocytogenes infection. The resulting beta1-deficient early memory T cells have decreased localization to the bone marrow and enhanced localization to PP after infection. Thus, the preferential association of beta1 integrin with alpha4 integrin suppresses alpha4beta7 integrin expression and regulates the localization of memory CD4 T cells.
    Full-text · Article · Mar 2010 · The Journal of Immunology
Show more