Content uploaded by Else Vellinga
Author content
All content in this area was uploaded by Else Vellinga on Nov 14, 2015
Content may be subject to copyright.
Content uploaded by Michael G. Wood
Author content
All content in this area was uploaded by Michael G. Wood on Jul 02, 2015
Content may be subject to copyright.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers,
academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
Lepiota maculans, an Unusual Mushroom Rediscovered after 105
years
Author(s): Joshua M. Birkebak, Else C. Vellinga, Ana E. Franco-Molano, Michael G.
Wood and P. Brandon Matheny
Source: Southeastern Naturalist, 10(2):267-274. 2011.
Published By: Humboldt Field Research Institute
DOI: 10.1656/058.010.0207
URL: http://www.bioone.org/doi/full/10.1656/058.010.0207
BioOne (www.bioone.org) is an electronic aggregator of bioscience research content,
and the online home to over 160 journals and books published by not-for-profit societies,
associations, museums, institutions, and presses.
Your use of this PDF, the BioOne Web site, and all posted and associated content indicates
your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
Usage of BioOne content is strictly limited to personal, educational, and non-commercial
use. Commercial inquiries or rights and permissions requests should be directed to the
individual publisher as copyright holder.
SOUTHEASTERN NATURALIST
2011 10(2):267–274
Lepiota maculans, an Unusual Mushroom Rediscovered
after 105 years
Joshua M. Birkebak1,*, Else C. Vellinga2, Ana E. Franco-Molano3,
Michael G. Wood4, and P. Brandon Matheny1
Abstract - During a survey of macrofungi in the Great Smoky Mountains National Park
in the summer of 2009, a species of Lepiota was recorded. This specimen is distinct in
having pink to salmon to orange colors on the fruiting body and a pink spore deposit. Af-
ter comparison with type material and a survey of the literature, we conclude this species
is L. maculans Peck, described originally and known only from one collection in Mis-
souri. Phylogenetic analysis of DNA sequence data supports placement within Lepiota
of the Agaricaceae despite possessing a pink spore deposit. A complete morphological
description, a description of the holotype, illustrations, and photographs are presented.
This is the ¿ rst report of L. maculans since its original description in 1905.
Introduction
Lepiota (Agaricaceae, Agaricales) is a large genus (estimated to have at
least 500 species worldwide) of pale-spored, saprotrophic fungi that are poorly
known in North America (Vellinga 2004). Most monographic treatments of the
group (Kauffman 1924; Morgan 1906a, 1906b, 1906c, 1907; Murrill 1914) are
outdated as they lacked information on many pertinent (particularly microscop-
ic) details, and only one has focused on a portion of the southeastern United
States (Akers 1997).
During a macrofungal diversity survey of the Great Smoky Mountains
National Park by researchers affiliated with the University of Tennessee,
University of California at Berkeley, University of Washington, Mycological
Society of San Francisco, and British Mycological Society, a distinct Lepiota
specimen was found with a predominantly pink and orange coloration. Af-
ter further study, the identity was determined to be Lepiota maculans Peck,
originally published from a collection made in Missouri (Peck 1905). To our
knowledge, this fungus has not been reported since its original publication. A
cursory examination of 79 undetermined specimens of Lepiota at the Univer-
sity of Tennessee herbarium was conducted in search of other collections of
this species. Despite the extensive collection of fungi from the Great Smoky
Mountains National Park (Hesler 1937, Lickey et al. 2007, Petersen 1979), no
additional specimens of L. maculans were found.
1Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville,
TN 37996. 2Department of Plant and Microbial Biology, University of California, 111
Koshland Hall, Berkeley, CA 94720-3102. 3Laboratorio de Taxonomía de Hongos, Insti-
tuto de Biología, Universidad de Antioquia A.A.1226, Medellín, Colombia. 414856 Sat-
urn Drive, San Leandro, CA 94578-1349. *Corresponding author - jbirkeba@utk.edu.
Southeastern Naturalist Vol. 10, No. 2
268
Methods
Morphological examination
Color notations of fruitbodies were taken from Ridgway (1912). Microscopic
characters were examined from dried material revived in 5% KOH. Spores for
measurement were taken from the spore deposit, and 20 cells or spores were mea-
sured for each character. All measurement summaries are given in the following
format: minimum–mean–maximum value. A Q-value is the ratio of cell/spore
length to cell/spore width.
Molecular examination
DNA extraction. A dried tissue sample between 10–20 mg was excised and
ground in liquid nitrogen with a micropestle and a pinch of sand in a 1.5-ml
microtube. DNA extraction was performed initially with an E.Z.N.A.® Fungal
DNA Kit (Omega Bio-Tek, Norcross, GA). This procedure yielded no PCR
products so a high-performance kit, E.Z.N.A.® HP Fungal DNA Kit (Omega
Bio-Tek), was used to remove polysaccharides and other potential interfering
factors. The isolated genomic DNA was diluted in two successive 1:10 sterile-
water dilutions.
PCR. Primers ITS1F (Gardes and Bruns 1993) and ITS4 (White et al. 1990)
were used to amplify the ITS1-5.8S-ITS2 region (a commonly used barcode
region in molecular fungal systematics) on a Bio-Rad C1000 thermal cycler (Bio-
Rad, Hercules, CA). A mixture of sterile water and 5X buffer, GoTaq, and dNTPs
supplied by Invitrogen Corp (Carlsbad, CA) was prepared for each dilution of
DNA and controls following manufacturer protocols. Our PCR protocol followed
that of White et al. (1990). PCR products were visualized on a 1.0% agarose gel
prepared with ethidium-bromide and a UV transilluminator. The ampli¿ ed ITS
product of L. maculans was cleaned using a QIAquick PCR puri¿ cation kit (Qia-
gen, Valencia, CA).
Sequencing. A sequence reaction was performed on the puri¿ ed ITS product
using a BigDye Terminator 3.1 Cycle sequencing kit (Applied Biosystems, Foster
City, CA). The sequence reaction solution was puri¿ ed with a Sephadex G-50
column (General Electric Healthcare, Piscataway, NJ) using separator strips
manufactured by Princeton Separations (Freehold, NJ). Sequencing was per-
formed on an ABI 3730 48-capillary electrophoresis genetic analyzer (Applied
Biosystems) at the Molecular Biology Resource Facility at the University of Ten-
nessee. Sequence chromatograms were inspected and edited using Sequencher
4.9 software (Gene Codes Corp, Ann Arbor, MI).
Phylogenetic analysis. The nrITS sequence was compared with those already
present in GenBank using the program BLAST (Altschul et al. 1990), and based
on the outcome a database of sequences from Lepiota sect. Lepiota was compiled.
The nrITS sequences were aligned with the program MAFFT version 6 (Katoh
and Toh 2008, Katoh et al. 2002). The sequence data matrix was analyzed by
maximum likelihood (ML) using RAxML version 7.2.3 (Stamatakis et al. 2008).
100 rapid ML bootstraps were performed. Lepiota ochraceofulva P.D. Orton and
L. elaiophylla Vellinga & Huijser were chosen as outgroup species. These species
J.M. Birkebak, E.C. Vellinga, A.E. Franco-Molano, M.G. Wood, and P.B. Matheny2011 269
differ from the subject taxon by having non-fusiform spores and a different type
of pileus covering.
Results
Taxonomy
Lepiota maculans Peck, Bulletin of the Torrey Botanical Club 32(2):77
(1905) (Fig. 1).
Pileus. 3.2–4.0 cm broad, plano-convex often with a slight umbo; margin de-
curved at ¿ rst, becoming straight with expansion, somewhat sulcate striate, often
eroded with age; disc “Dresden Brown”, “Ochraceous-Tawny” to “Buckthorn
Brown”, velutinous, breaking up in scales near center of pileus, scales sparse,
exposing context; context “Mustard Yellow” to “Amber Yellow” near the center,
“Salmon-Buff” to “Light Salmon-Buff” to “Orange-Pink” outward, at very edge
discolored “Peach Red” to “Scarlet”.
Lamellae. Free, nearly crowded, thin, 4–6 mm broad, “Pale Ochraceous-Buff”
when young, becoming “Salmon Color” to “Orange-Pink”, often discoloring
“Peach Red” to “Scarlet” near margin of pileus.
Stipe. 36–54 mm long, 2.5–3.0 mm wide at apex, gradually enlarging down-
ward or sometimes bulbous to clavate, 3–5 mm wide at the base, “Maize Yellow”
to “Buff-Yellow” at apex, “Mustard Yellow” on the lower half with numerous
À occose-¿ brillose patches; partial veil leaving a loose median annular zone.
Pileus covering. A trichoderm of erect, cylindrical, slightly yellow-brown pig-
mented, 117-188-345 × 7-9-11 m elements with obtuse to slightly acute apices,
commonly secondarily septate, arising from numerous short, cylindrical to clav-
ate elements near the base, though some elements have an intermediate length
(Fig.2).
Figure 1. Fresh basidiocarps of Lepiota maculans (collection JMB 05-08-09-18). Scale
bar = 1 cm. Photograph © M.G. Wood.
Southeastern Naturalist Vol. 10, No. 2
270
Spores. 8.8-9.5-11.3 × 4.4-4.9-5.4 m, Q-value 1.86-1.93-2.11, smooth,
oblong amygdaliform in pro¿ le, fusiform in frontal view, dextrinoid, not metach-
romatic in cresyl blue (Fig. 2).
Basidia. 22-27-32 × 8-9-11 m, clavate to subcylindrical, with four sterigmata.
Cheilocystidia. 13-19-29 × 6.0-7.5-11 m, clavate to subcylindrical, some-
times clavate pedicellate, occasionally arising sympodially (Fig. 2).
Clamp connections. Present in all tissues.
Habitat. Gregarious, terrestrial, in unkempt grass near edge of deciduous
forest.
Specimens examined. TENNESSEE: Cosby, GSMNP, 35°45'39"N,
083°12'38"W, elevation 635 m, leg. J.M. Birkebak, 5-Aug-2009, JMB 05-08-09-
18, TENN064381.
Figure 2. Micromorphological characters: PP = pileus covering, CC = cheilocystidia, S =
spores. (from JMB 05-08-09-18).
J.M. Birkebak, E.C. Vellinga, A.E. Franco-Molano, M.G. Wood, and P.B. Matheny2011 271
Comments
This species is set apart in the genus Lepiota by its distinctive coloration.
Many species of the related genus Leucoagaricus discolor orange or red, but no
other known members of the genus Lepiota discolor so strongly orange and pink.
It is unclear whether this coloration change is a staining reaction or a gradual
discoloration with age. Peck remarked in his commentary of the protologue that
L. maculans is easily recognizable due to the bruised À esh that turns reddish and
the lamellae that become reddish or pink upon drying. Ideally, future observa-
tions of fresh material should resolve whether the nature of discolorations is
speci¿ cally due to bruising or by maturation of the sporocarps.
Lepiota maculans is the only known species of Lepiota to have a "Seashell
Pink" spore deposit as opposed to a white or cream deposit for the remainder
of the species in the genus. The remaining characters, viz., pileipellis struc-
ture, spore morphology, and the presence of clamp connections, are typical for
the genus.
Molecular phylogenetic reconstruction using ITS sequence data suggests a
placement of L. maculans in Lepiota sect. Lepiota near L. ignivolvata Bousset &
Joss. described originally from France (Fig. 3). Both species have oblong spores
and a pileus covering composed of both long and short elements. Lepiota igniv-
olvata, however, is a robust species with a stipe that discolors orange in its basal
part when touched. This species is known only from Europe, where it has been
reported widely in numerous À oras (Horak 2005).
A study of the holotype (Glatfelter s.n.) at NYS re-af¿ rms our identi¿ cation
of L. maculans. Importantly, the spores of the type are consistent in shape, size,
and dextrinoid and non-metachromatic walls as the Tennessee material. Unfor-
tunately, due to the poor preservation of the type overall, we could not observe
cheilocystidia and trichodermial elements of the pileus covering, although an
underlying hymeniderm to the pileipellis was observed (as in our material). As
complete a description as possible of the holotype is presented below. The fol-
lowing microscopic observations are our own.
Pileus. 1.5–2 cm diam, thin, convex, subumbonate, dry, minutely and densely
squamulose, reddish-yellow, the center darker.
Lamellae. Broad, subdistant, free, white, gradually changing to red or pink.
Stipe. About 5 cm long, 2–3 mm thick, equal, tough, À occose or ¿ brillose,
hollow, whitish or yellowish, the annulus slight, evanescent.
Spores. 7.5–9.5 x 3.7–4.7 m, ovoid to broadly ellipsoid in pro¿ le view,
weakly dextrinoid, not metachromatic in cresyl blue.
Basidia. 27–35 x 9–10 m, clavate, thin-walled, 4-strigmate.
Pleurocystidia. Absent.
Cheilocystidia. Not observed.
Hymenophoral trama. Regular composed by cylindrical to inÀ ated hyphae up
to 18 m broad.
Suhhymenium. Pseudoparenchymatous, up to 20 m thick.
Southeastern Naturalist Vol. 10, No. 2
272
Pileal trama. Loosely interwoven, composed of cylindrical, radially arranged,
thin-walled, 3–12 m broad hyphae with hyaline or with yellowish red content in
KOH.
Pileus covering. Appearing as a hymeniform layer composed of clavate termi-
nal cells, yellowish in KOH.
Stipitipellis. Of pararllel and vertically oriented elements up to 15 m broad,
with terminal cells similar to those of the pileipellis and forming tufts more abun-
dant at the apex.
Clamps connections. Present in all tissues.
Figure 3. Maximum Likelihood phylogram recovered for the nrITS region using
RAxML version 7.2.3 for selected taxa in Lepiota sect. Lepiota from North America
and Europe, including one other species from the GSMNP, with bootstrap values indi-
cated at branch nodes.
J.M. Birkebak, E.C. Vellinga, A.E. Franco-Molano, M.G. Wood, and P.B. Matheny2011 273
Discussion
Basic knowledge of mushroom-forming fungi is relatively poor compared to
that of plants and animals. The fruitbodies of mushroom-forming fungi are often
ephemeral, and the taxonomy of many species relies on morphological traits
necessary to observe in fresh condition. Basic information such as distribution,
ecology, and phenology is at best preliminary, if not incomplete, for many fungi
of North America, including the southeast United States (Bessette et al. 2007,
Weber and Smith 1985).
Extensive survey work documenting fungal biodiversity in the Great Smoky
Mountains National Park for the All Taxa Biotic Inventory has been conducted
(e.g., Lickey et al. 2007). As of 2009, 833 new records for the Park have been
made, 75 of which are species new to science, adding to the 2550 previously
reported species to increase the total of known fungi in the Park to 3383 (http://
www.dlia.org/atbi/new_science/discoveries.shtml). Lepiota maculans represents
yet another new record to the Park. It is possible that L. maculans has been pre-
viously overlooked, but this seems unlikely given its striking coloration and the
intensive collecting efforts in the Great Smoky Mountains National Park. It is
more likely the species is rare or infrequent given its currently known distribu-
tion—Missouri and eastern Tennessee.
Acknowledgments
We are grateful to the Great Smoky Mountains National Park and Dr. Karen Hughes
at the University of Tennessee for providing collecting permits. We would like to thank
David Pratt and staff af¿ liated with the University of Tennessee Biology Field Station for
providing ¿ eld facilities, as well as Dr. Steve Trudell and an anonymous reviewer for pro-
viding helpful reviews on this manuscript. Partial funding by NSF grant DEB-0618293 to
E.C. Vellinga and DEB-0949517 to P.B. Metheny is gratefully acknowledged.
Literature Cited
Akers, B.P. 1997. The family Lepiotaceae (Agaricales, Basidiomycetes) in Florida.
M.Sc. Thesis. Southern Illinois University, Carbondale, IL. 253 pp.
Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local align-
ment search tool. Journal of Molecular Biology 215:403–410.
Bessette, A.E., W.C. Roody, A.R. Bessette, and D.L. Dunaway. 2007. Mushrooms of the
Southeastern United States. Syracuse University Press, Syracuse, NY. 373 pp.
Gardes, M., and T.D. Bruns. 1993. ITS primers with enhanced speci¿city for basidiomy-
cetes: Application to the identi¿cation of mycorrhizae and rusts. Molecular Ecology
2:113–118.
Hesler, L.R. 1937. A preliminary checklist of the fungi of the Great Smoky Mountains
National Park. Castanea 2:45–58.
Horak, E. 2005. Röhrlinge und Blätterpilze in Europa. Spektrum Akademischer Verlag,
Munich, Germany. 555 pp.
Katoh, K., and H. Toh. 2008.Recent developments in the MAFFT multiple sequence
alignment program. Brie¿ ngs in Bioinformatics 9:286–298.
Katoh, K., K. Misawa, K. Kuma, and T. Miyata. 2002. MAFFT: A novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research
30:3059–3066.
Southeastern Naturalist Vol. 10, No. 2
274
Kauffman, C.H. 1924. The genus Lepiota in the United States. Papers from the Michigan
Academy of Science, Arts, and Letters 4:319–344.
Lickey, E.B., S.M. Tieken, K.W. Hughes, and R.H. Petersen. 2007. The mushrooms
TWiG: A marvelous mycological menagerie in the mountains. Southeastern Naturalist
Special Issue 1:73–82.
Morgan, A.P. 1906a. North American species of Lepiota. Journal of Mycology
12:154–159.
Morgan, A.P. 1906b. North American species of Lepiota (continued). Journal of Mycol-
ogy 12:195–203.
Morgan, A.P. 1906c. North American species of Lepiota (continued). Journal of Mycol-
ogy 12:242–248.
Morgan, A.P. 1907. North American species of Lepiota (concluded). Journal of Mycol-
ogy 13:1–18.
Murrill, W.A. 1914. Agaricaceae. North American Flora 10 (1):41-65.
Peck, C.H. 1905. New species of fungi. Bulletin of the Torrey Botanical Club 32:77–81.
Petersen, R.H. 1979. Checklist of fungi of the Great Smoky Mountains National Park.
Management report No. 29. Department of the Interior, National Park Service, South-
east Region, Uplands Field Research Laboratory, Great Smoky Mountains National
Park, Twin Creeks, Gatlinburg, TN. 103 pp.
Ridgway, R. 1912. Color Standards and Color Nomenclature. Published privately (by the
author), Washington, DC. 43 pp + 53 color pls.
Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the
RAxML web–Servers. Systematic Biology 75:758–771.
Vellinga, E.C. 2004. Ecology and distribution of lepiotaceous fungi (Agaricaceae): A
review. Nova Hedwigia 78:273–299.
Weber, N.S., and A.H. Smith. 1985. A Field Guide to Southern Mushrooms. University
of Michigan Press, Ann Arbor, MI. 280 pp.
White, T.J., T.D. Bruns, S.B. Lee, and J.W. Taylor. 1990. Ampli¿ cation and direct se-
quencing of fungal ribosomal RNA Genes for phylogenetics. Pp. 315–322, In N. In-
nis, D. Gelfand, J.Sninsky, and T. White (Eds.). PCR - Protocols and Applications: A
Laboratory Manual. Academic Press, New York, NY. 482 pp.