Transplantation and Magnetic Resonance Imaging of Canine Neural Progenitor Cell Grafts in the Postnatal Dog Brain

Stokes Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 3.8). 10/2008; 67(10):954-62. DOI: 10.1097/NEN.0b013e3181875b2f
Source: PubMed


Cellular transplantation in the form of bone marrow has been one of the primary treatments of many lysosomal storage diseases (LSDs). Although bone marrow transplantation can help central nervous system manifestations in some cases, it has little impact in many LSD patients. Canine models of neurogenetic LSDs provide the opportunity for modeling central nervous system transplantation strategies in brains that more closely approximate the size and architectural complexity of the brains of children. Canine olfactory bulb-derived neural progenitor cells (NPCs) isolated from dog brains were expanded ex vivo and implanted into the caudate nucleus/thalamus or cortex of allogeneic dogs. Canine olfactory bulb-derived NPCs labeled with micron-sized superparamagnetic iron oxide particles were detected by magnetic resonance imaging both in vivo and postmortem. Grafts expressed markers of NPCs (i.e. nestin and glial fibrillary acidic protein), but not the neuronal markers Map2ab or beta-tubulin III. The NPCs were from dogs with the LSD mucopolysaccharidosis VII, which is caused by a deficiency of beta-glucuronidase. When mucopolysaccharidosis VII canine olfactory bulb-NPCs that were genetically corrected with a lentivirus vector ex vivo were transplanted into mucopolysaccharidosis VII recipient brains, they were detected histologically by beta-glucuronidase expression in areas identified by antemortem magnetic resonance imaging tracking. These results demonstrate the potential for ex vivo stem cell-based gene therapy and noninvasive tracking of therapeutic grafts in vivo.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past 20 years, the conception of brain development has radically changed from a fixed and limited hierarchical process to a more plastic and continuous one. Most surprising, the field has learned that postnatal neurogenesis is not just a seasonal phenomenon in songbirds but a process that occurs across species and seasons. Astrocytes, whose primary role in the central nervous system was thought to be strictly supportive, have emerged as a heterogeneous population, a subset of which is the neural stem cell. Postnatal neurogenesis persists in specialized niches within the rostral subventricular zone and hippocampal dentate gyrus and, for a limited period, within the white matter tracts and external granular layer of the cerebellum. These specialized microenvironments are influenced by factors in the blood, cerebrospinal fluid, and local extracellular matrix. This article reviews the current understanding of adult neurogenesis, which is conserved across many vertebrate species, underscoring the value of animal models in past and present studies of human neurogenesis and neurogenic disease.
    Full-text · Article · Aug 2011 · Veterinary Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI)-based tracking is increasingly attracting attention as a means of better understanding stem cell dynamics in vivo. Intracellular labeling with micrometer-sized particles of iron oxide (MPIOs) provides a practical MRI-based approach due to superior detectability relative to smaller iron oxide particles. However, insufficient information is available about the general utility across cell types and the effects on cell vitality of MPIO labeling of human stem cells. We labeled 6 human cell types from different sources: mesenchymal stem cells derived from bone marrow (MSCs), mesenchymal stem cells derived from adipose tissue (ASCs), presumptive adult neural stem cells (ad-NSCs), fetal neural progenitor cells (f-NPCs), a glioma cell line (U87) and glioblastoma tumor stem cells (GSCs), with two different sizes of MPIOs (0.9 and 2.84 μm). Labeling and uptake efficiencies were highly variable among cell types. Several parameters of general cell function were tested in vitro. Only minor differences were found between labeled and unlabeled cells with respect to proliferation rate, mitotic duration, random motility and capacity for differentiation to specific phenotypes. In vivo behavior was tested in chicken embryos and severe combined immunodeficient (SCID) mice. Postmortem histology showed that labeled cells survived and could integrate into various tissues. MRI-based tracking over several weeks in the SCID mice showed that labeled GSCs and f-NPCs injected into the brain exhibited translocations similar to those seen for unlabeled cells and as expected from migratory behavior described in previous studies. The results support MPIO-based cell tracking as a generally useful tool for studies of human stem cell dynamics in vivo.
    Full-text · Article · Mar 2012 · Cell Transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.
    Full-text · Article · May 2012 · PLoS ONE
Show more