Basic helix-loop-helix transcription factor NEUROG1 and schizophrenia: Effects on illness susceptibility, MRI brain morphometry and cognitive abilities

Department of Psychiatry, University of Iowa Carver College of Medicine, USA.
Schizophrenia Research (Impact Factor: 3.92). 10/2008; 106(2-3):192-9. DOI: 10.1016/j.schres.2008.08.009
Source: PubMed


Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p<or=.0018). Approximately 80% of the sample also underwent high-resolution, multi-spectral magnetic resonance brain imaging and standardized neuropsychological assessment. There were significant rs2344484 genotype main effects on total cerebral gray matter (GM) and temporal GM volumes (p<or=.05). C-allele-carrier patients and healthy volunteers had smaller total cerebral GM and temporal GM volumes than their respective T-homozygous counterparts. rs2344484-C-allele was further associated with generalized cognitive deficits among schizophrenia patients but not in healthy volunteers. Our findings replicate previous association between NEUROG1 and schizophrenia. More importantly, this is the first study to examine brain morphological and neurocognitive correlates of NEUROG1. rs2344484-C-allele may affect NEUROG1's role in transcription regulation such that brain morphology and cognitive abilities are altered resulting in increased susceptibility to develop schizophrenia.

  • Source
    • "Only three DTI studies of genetic HR have been reported to date (briefly summarized in Supplemental Table II), and one of these studies was in neonatal offspring (and is thus difficult to compare to the others). The NYU HRS reported ADC abnormalities in the left middle and superior frontal gyri and left parahippocampal gyrus [DeLisi et al., 2006], and reduced FA in the left inferior frontal gyrus white matter, the left posterior cingulate and in the angular gyri bilaterally [Hoptman et al., 2008]. Also in the NYU HRS, FA was higher in HR in the left subgenual ACC, the bilateral pontine tegmental white matter and the right middle frontal gyri, suggesting differences in white matter development in HR compared to controls. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to identify the developing abnormalities preceding psychosis, Dr. Ming T. Tsuang and colleagues at Harvard expanded Meehl's concept of "schizotaxia," and examined brain structure and function in families affected by schizophrenia (SZ). Here, we systematically review genetic (familial) high-risk (HR) studies of SZ using magnetic resonance imaging (MRI), examine how findings inform models of SZ etiology, and suggest directions for future research. Neuroimaging studies of youth at HR for SZ through the age of 30 were identified through a MEDLINE (PubMed) search. There is substantial evidence of gray matter volume abnormalities in youth at HR compared to controls, with an accelerated volume reduction over time in association with symptoms and cognitive deficits. In structural neuroimaging studies, prefrontal cortex (PFC) alterations were the most consistently reported finding in HR. There was also consistent evidence of smaller hippocampal volume. In functional studies, hyperactivity of the right PFC during performance of diverse tasks with common executive demands was consistently reported. The only longitudinal fMRI study to date revealed increasing left middle temporal activity in association with the emergence of psychotic symptoms. There was preliminary evidence of cerebellar and default mode network alterations in association with symptoms. Brain abnormalities in structure, function and neurochemistry are observed in the premorbid period in youth at HR for SZ. Future research should focus on the genetic and environmental contributions to these alterations, determine how early they emerge, and determine whether they can be partially or fully remediated by innovative treatments. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Oct 2013 · American Journal of Medical Genetics Part B Neuropsychiatric Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obsessive-compulsive disorder (OCD) is a heritable and debilitating neuropsychiatric condition. Attempts to delineate genetic contributions have met with limited success, and there is an ongoing search for intermediate trait or vulnerability markers rooted in the neurosciences. Such markers would be valuable for detecting people at risk of developing the condition, clarifying etiological factors and targeting novel treatments. This review begins with brief coverage of the epidemiology of OCD, and presents a hierarchical model of the condition. The advantages of neuropsychological assessment and neuroimaging as objective measures of brain integrity and function are discussed. We describe the concept of endophenotypes and examples of their successful use in medicine and psychiatry. Key areas of focus in the search for OCD endophenotypes are identified, such as measures of inhibitory control and probes of the integrity of orbitofrontal and posterior parietal cortices. Finally, we discuss exciting findings in unaffected first-degree relatives of patients with OCD that have led to the identification of several candidate endophenotypes of the disorder, with important implications for neurobiological understanding and treatment of this and related conditions.
    Full-text · Article · Sep 2009 · Expert Review of Neurotherapeutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: CONTEXT The single-nucleotide polymorphism rs1344706 in the gene ZNF804a has been associated with schizophrenia and with quantitative phenotypic features, including brain structure volume and the core symptoms of schizophrenia. OBJECTIVE To evaluate associations of rs1344706 with brain structure and the core symptoms of schizophrenia. DESIGN Case-control analysis of covariance. SETTING University-based research hospital. PARTICIPANTS Volunteer sample of 335 individuals with schizophrenia spectrum disorders (306 with core schizophrenia) and 198 healthy volunteers. MAIN OUTCOME MEASURES Cerebral cortical gray matter and white matter (WM) volumes (total and frontal, parietal, temporal, and occipital lobes), lateral ventricular cerebrospinal fluid volume, and symptom severity from the Scale for the Assessment of Negative Symptoms and the Scale for the Assessment of Positive Symptoms divided into 3 domains: psychotic, negative, and disorganized. RESULTS The rs1344706 genotype produced significant main effects on total, frontal, and parietal lobe WM volumes (F = 3.98, P = .02; F = 4.95, P = .007; and F = 3.08, P = .05, respectively). In the schizophrenia group, rs1344706 produced significant simple effects on total (F = 3.93, P = .02) and frontal WM volumes (F = 7.16, P < .001) and on psychotic symptom severity (F = 6.07, P = .003); the pattern of effects was concordant with risk allele carriers having larger volumes and more severe symptoms of disease than nonrisk homozygotes. In the healthy volunteer group, risk allele homozygotes had increased total WM volume compared with nonrisk allele carriers (F = 4.61, P = .03), replicating a previously reported association. CONCLUSIONS A growing body of evidence suggests that the risk allele of rs1347706 is associated with a distinctive set of phenotypic features in healthy volunteers and individuals with schizophrenia. Our study supports this assertion by finding that specific genotypes of the polymorphism are associated with brain structure volumes in individuals with schizophrenia and healthy volunteers and with symptom severity in schizophrenia.
    No preview · Article · Sep 2012 · Archives of general psychiatry
Show more