Blockade of the 5-HT3 Receptor for Days Causes Sustained Relief From Mechanical Allodynia Following Spinal Cord Injury

ArticleinJournal of Neuroscience Research 87(2):418-24 · February 2009with6 Reads
Impact Factor: 2.59 · DOI: 10.1002/jnr.21860 · Source: PubMed

    Abstract

    Chronic neuropathic pain is a frequent, serious outcome of spinal cord injury (SCI) that is highly refractory to treatment. Serotonin can contribute to neuropathic pain after SCI, as suggested by our previous observation that transient blockade of the 5-HT(3) receptor by intrathecal injections of the antagonist ondansetron reduces mechanical allodynia after SCI in rats. The current study determined whether intrathecal or intravenous infusion of ondansetron for 3 or 7 days, respectively, could cause sustained blockade of mechanical allodynia at and below the level of a twelfth thoracic clip compression injury in rats. Intrathecal 3-day infusion of ondansetron (2.0 microg/hr), targeted to the cord rostral to the SCI and commencing at 28 days after SCI, decreased at-level mechanical allodynia by 40% and below-level allodynia by 60% compared with saline-treated rats (controls). This reduction was sustained throughout drug delivery and for 1 day afterward. During the next 3 days, allodynia gradually returned toward the values of saline-treated rats. An initial experiment showed that bolus intravenous injections of ondansetron (20-100 microg) at 28 days after SCI decreased both at- and below-level allodynia for 90-120 min. Intravenous 7-day infusions (20 microg/hr), commencing at 28 days after SCI, significantly decreased at-level allodynia by 48% and below-level allodynia by 51% compared with controls. This reduction of allodynia lasted throughout the infusion and for 1-3 days afterward while pain responses gradually approached those of controls. These findings suggest a potential role of 5-HT(3) receptor antagonism in the relief of neuropathic pain after SCI in humans.