Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours

Istituto di Medicina Nucleare, Dipartimento di Bioimmagini e Scienze Radiologiche, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, 00168 Roma, Italy.
La radiologia medica (Impact Factor: 1.34). 10/2008; 113(7):1056-67. DOI: 10.1007/s11547-008-0319-9
Source: PubMed


Somatostatin receptor scintigraphy with [(111)In]-diethylene triamine pentaacetate acid (DTPA)-octreotide is an accurate method for detecting neuroendocrine tumours (NETs) but often does not provide clear anatomical localisation of lesions. The aim of this study was to assess the clinical usefulness of anatomical-functional image fusion.
Fifty-four patients with known or suspected NET were included in the study. Planar and single-photon-emission computed tomography (SPECT) imaging was performed using a dual-head gamma camera equipped with an integrated X-ray transmission system, and the images were first interpreted alone by two nuclear medicine physicians and then compared with SPECT/CT fusion images together with a radiologist. The improvement provided by SPECT/CT in the interpretation of SPECT data alone and any modification in patient management were recorded.
Fusion images improved SPECT interpretation in 23 cases, providing precise anatomical localisation of increased tracer uptake in 20 cases and disease exclusion in sites of physiological uptake in 5. In 10 patients, SPECT/CT allowed definition of the functional significance of lesions detected by diagnostic CT. SPECT/CT data modified clinical management in 14 cases by changing the diagnostic approach in 8 and the therapeutic modality in 6.
Our study demonstrates that image fusion is clearly superior to SPECT alone, allowing precise localisation of lesions and reducing false-positive results.

Download full-text


Available from: Giorgio Treglia
  • Source
    • "Dual-modality imaging systems which allow both functional and structural imaging to be performed during a single imaging session improve image quality in comparison to functional imaging only (10). Fusion imaging resulting from hybrid devices has been reported to be clearly giving better localization of disease and differentiation between physiologic and pathologic uptake (11,12,13,14). This study emphasizes the clinical utility of SPECT/CT over SPECT alone in the assessment of endocrine and neuroendocrine tumors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To assess the clinical utility of SPECT/ CT in subjects with endocrine and neuroendocrine tumors compared to SPECT alone. Material and Methods: 48 subjects (31 women;17 men; mean age 54±11) with clinical suspicion or diagnosis of endocrine and neuroendocrine tumor had 50 SPECT/CT scans (32 Tc-99m MIBI, 5 post treatment I-131, 8 In-111 Pentetreotide, and 5 I-123 MIBG). SPECT alone findings were compared to SPECT/CT and to pathology or radiological follow up. Results: From the 32 Tc-99m MIBI scans, SPECT accurately localized the lesion in 22 positive subjects while SPECT/CT did in 31 subjects. Parathyroid lesions not seen on SPECT alone were smaller than 10 mm. In five post treatment I-131 scans, SPECT alone neither characterized, nor localized any lesions accurately. SPECT/CT revealed 3 benign etiologies, a metastatic lymph node, and one equivocal lesion. In 8 In-111 Pentetreotide scans, SPECT alone could not localize primary or metastatic lesions in 6 subjects all of which were localized with SPECT/CT. In five I-123 MIBG scans, SPECT alone could not detect a 1.1 cm adrenal lesion or correctly characterize normal physiologic adrenal uptake in consecutive scans of the same patient with prior history of adrenelectomy, all of which were correctly localized and characterized with SPECT/CT. Conclusion: SPECT/CT is superior to SPECT alone in the assessment of endocrine and neuroendocrine tumors. It is better in lesion localization and lesion characterization leading to a decrease in the number of equivocal findings. SPECT/CT should be included in the clinical work up of all patients with diagnosis or suspicion of endocrine and neuroendocrine tumors. Conflict of interest:None declared.
    Full-text · Article · Dec 2012
    • "Gamma cameras with an integrated CT (SPECT/CT)[79] allow a precise interpretation of the results of scintigraphic studies with accurate localizations and a higher specificity in the diagnosis of NETs.[10–12] However, these equipments are still not in frequent use. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the clinical diagnosis of neuroendocrine tumors (NET), the results of examinations, such as high-resolution computed tomography (CT) and single photon computerized tomography (SPECT), have conventionally been interpreted separately. The aim of the present study was to evaluate Hermes Multimodality™ 5.0 H Image Fusion software-based automatic and manual image fusion of SPECT and CT for the localization of NET lesions. Out of 34 NET patients who were examined by means of somatostatin receptor scintigraphy (SRS) with 111In- pentetreotide along with SPECT, 22 patients had a CT examination of the abdomen, which was used in the fusion analysis. SPECT and CT data were fused using software with a registration algorithm based on normalized mutual information. The criteria for acceptable fusion were established at a maximum cranial or caudal dislocation of 25 mm between the images and at a reasonable consensus (in order of less than 1 cm) between outline of the reference organs. The automatic fusion was acceptable in 13 of the 22 examinations, whereas 9 fusions were not. However all the 22 examinations were acceptable at the manual fusion. The result of automatic fusion was better when the slice thickness of 5 mm was applied at CT examination, when the number of slices was below 100 in CT data and when both examinations included uptakes of pathological lesions. Retrospective manual image fusion of SPECT and CT is a relatively inexpensive but reliable method to be used in NET imaging. Automatic image fusion with specified software of SPECT and CT acts better when the number of CT slices is reduced to the SPECT volume and when corresponding pathological lesions appear at both SPECT and CT examinations.
    No preview · Article · Oct 2010 · Journal of Medical Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendokrine Tumore des gastroenteropankreatischen Systems (GEP-NET) stellen eine sehr heterogene Gruppe mit steigender Inzidenz und Prävalenz dar. Neben der Erhebung klinischer Befunde, der Bestimmung biochemischer Marker und der Durchführung konventioneller, morphologisch bildgebender Verfahren wie CT, MRT, Sonographie und Endosonographie können nuklearmedizinische, funktionelle Untersuchungen einen entscheidenden Beitrag in Diagnostik, Staging, Follow up und zur Therapieentscheidung liefern. Die breitere Verfügbarkeit der dualen Bildgebung in Form von SPECT/CT und PET/CT hat die nuklearmedizinischen diagnostischen Möglichkeiten noch erweitert, da pathologische Läsionen genau anatomischen Strukturen zugeordnet werden können.
    No preview · Article · Jun 2009
Show more