ArticlePDF Available

Artistic Scientists and Scientific Artists: The Link Between Polymathy and Creativity.


Abstract and Figures

The literature comparing artistic and scientific creativity is sparse, perhaps because it is assumed that the arts and sciences are so different as to attract different types of minds, each working in very different ways. As C. P. Snow wrote in his famous essay "The Two Cultures," artists and intellectuals stand at one pole and scientists at the other. The authors' purpose here is to argue that Snow's oft-repeated opinion has little substantive basis. Without denying that the products of the arts and sciences are different in both aspect and purpose, they nonetheless find that the processes used by artists and scientists to forge innovations are extremely similar. Contrary to Snow's two-cultures thesis, the arts and sciences are part of one, common creative culture largely composed of polymathic individuals. The authors base their argument on five types of evidence that correlate artistic and scientific creativity. First, successful artists and scientists tend to be polymaths with unusually broad interests and training that transcend disciplinary boundaries. Second, artists and scientists have similar psychological profiles as determined by widely used psychological tests. Third, arts proclivities predict scientific success just as intellectually challenging avocations predict success in all fields. Fourth, scientists and artists often describe their creative work habits in the same ways, using the same language, and draw on common, transdisciplinary mental toolkits that include observing, imaging, abstracting, patterning, body thinking, empathizing, and so forth. Fifth, scientists often state that their art avocation fruitfully informs their vocation; artists often draw explicit sustenance from their scientific interests. The arts have often stimulated scientific discoveries and science has often influenced the nature of artistic creativity. These observations have broad implications for our understanding of creativity, intelligence, and education. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Content may be subject to copyright.
[Near final draft for Root-Bernstein, Robert and Root-Bernstein, Michele. (2004). “Artistic
Scientists and Scientific Artists: The Link Between Polymathy and Creativity,” in Robert
Sternberg, Elena Grigorenko and Jerome Singer, (Eds.). Creativity: From Potential to
Realization (Washington D.C.: American Psychological Association, 2004), pp. 127-151.]
The literature comparing artistic and scientific creativity is sparse, perhaps because it is
assumed that the arts and sciences are so different as to attract different types of minds who work
in very different ways. As C. P. Snow wrote in his famous essay, The Two Cultures, artists and
intellectuals stand at one pole and scientists at the other: “Between the two a gulf of mutual
incomprehension -- sometimes ... hostility and dislike, but most of all lack of understanding...
Their attitudes are so different that, even on the level of emotion, they can't find much common
ground." (Snow, 1964, 4) Our purpose here is to argue that Snow's oft-repeated opinion has little
substantive basis. Without denying that the products of the arts and sciences are different in both
aspect and purpose, we nonetheless find that the processes used by artists and scientists to forge
innovations are extremely similar. In fact, an unexpected proportion of scientists are amateur and
sometimes even professional artists, and vice versa. Contrary to Snow’s two-cultures thesis, the
arts and sciences are part of one, common creative culture largely composed of polymathic
We base our argument on five basic types of evidence that correlate artistic and scientific
creativity. First, successful artists and scientists tend to be polymaths with unusually broad
interests and training that transcends disciplinary boundaries. Second, artists and scientists have
similar psychological profiles as determined by widely used psychological tests. Third, arts
proclivities predict scientific success just as intellectually challenging avocations predict success
in all fields. Fourth, scientists and artists often describe their creative work habits in the same
ways, using the same language, and draw upon a similar, if not identical, trans-disciplinary
mental tool kit that includes observing, imaging, abstracting, patterning, body thinking,
empathizing and so forth. Fifth and finally, scientists often state that their art avocation fruitfully
informs their vocation; artists often draw explicit sustenance from their scientific interests. The
arts have often stimulated scientific discoveries and science has often influenced the nature of
artistic creativity.
These observations have broad implications for our understanding of creativity,
intelligence, and education. First, they establish a connection between personal or “little c”
creativity, which most people experience, and “big C” domain-altering creativity, to which only a
handful of people contribute. We contend that the individual producing “big C” creativity in one
field more often than not exhibits a polymathic array of “smaller c” creativity in other fields.
Learning how to manipulate the creative process in one discipline appears to train the mind to
understand the creative process in any discipline. In other words, creative people tend to be
generally creative, in the sense of being able to make personal contributions to disparate fields.
For most people, these contributions vary widely in novelty and effectiveness. Such individuals
may be unpublished amateur poets and Nobel prize-winning chemists, or Sunday painters and
paradigm-altering composers. In extreme cases, however, modern ‘Renaissance’ people make
relatively important contributions to several sciences, several arts, or to both. The very fact that
individuals can participate in a range of creative vocations and avocations at various levels of
novelty and effectiveness suggests to us that there is a general creative intelligence that is
independent of disciplinary or domain-specific boundaries.
Equally important, the five correlations we will explore suggest that the devaluation of
the arts, and the elimination of arts training from many schools may have significant detrimental
effects on creativity across all disciplines. One of the few curricular areas in which students learn
to make something of at least limited novelty is in the arts. If practice with the creative process
through “little c” creative activities is essential to training people for “big C” creative activities,
then limiting or eliminating arts programs must have a broad impact. In particular, since arts and
crafts avocations are highly associated with scientific creativity, fostering arts education may be
necessary to promote the highest forms of scientific creativity, an opinion expressed by many
eminent scientists.
Scientists as Artists and Artists as Scientists
Our interest in arts-sciences interactions began as graduate students when we
serendipitously encountered a series of famous scientists who had also considered artistic careers
or who had practiced the arts at a high level as adults. One of us subsequently documented over
400 instances. (Root-Bernstein, 1989, 318-327) Here we call attention to only a handful of
examples. Louis Pasteur, Frederick Banting, and Santiago Ramon y Cajal were all excellent
artists. (Vallery-Radot, 1987; Jackson, 1943; Ramon y Cajal, 1937) Sir Humphrey Davy, the
founder of modern atomic theory, wrote poetry that was praised by his friend and colleague
Coleridge. (Davy, 1840) Roald Hoffmann, the man who many chemists believe has brought more
order to chemical theory than anyone since Mendeleev and his periodic table, is also a widely
published poet and playwright. (Hoffmann, 1988: Djerassi et al., 2001) C. G. Jung, whose artistic
output nearly rivaled his psychoanalytical work, described his art-making as “a rite of entry” to
his science. (Jaffe, 1979, 79, 205) Roger Guillemin, the Nobel laureate who isolated the first
peptide hormones, is also a painter who has since made a reputation as a professional computer
artist (Guillemin, 2002). Virologist and vaccine inventor Hilary Kaprowski, following in the
footsteps of astronomer William Herschel and chemist Alexander Borodin, has taken time out
from his scientific studies to record his musical compositions. (Herschel, 1995; Borodin, 1995;
Kaprowski, 1999)
We quickly determined that artists were also polymathic in the arts. Musical talent is so
easily found among painters (e.g. Jean Ingre, Paul Klee, and Henri Matisse), that author Henri
Miller once remarked, "Every artist worth his salt has his 'violin d'Ingres'." (Hjerter, 1986,
fronticepiece) In Miller's case, his metaphorical "violin" was painting -- a typical avocation for
writers. (Miller, 1974) Many books have, in fact, illustrated the very strong connections that exist
between visual talents and writing, most notably Kathleen Hjerter's Doubly Gifted: The Author as
Visual Artist (1986) and Lola Szladits' and Harvey Simmonds' Pen and Brush: The Author as
Artist (1969).
Indeed, if one goes to the website of the Nobel Foundation in Sweden, or biographical
compedia concerning these laureates in literature, one finds that, although avocational interests
are mentioned for only 55 of 98, at least a third had adult (a)vocations in at least one other art
and that, most often, a visual art. (TABLE 1) Some Nobel-prize winning writers have also acted
or directed theatrical productions, played musical instruments or composed. For many, these
passions influenced their writing. For some, these multiple talents have been expressed as dual
careers: Rabindranath Tagore composed the music for hundreds of his poems that he set as
songs; Derek Wolcott and Gao Xingjian have exhibited their paintings professionally; Gunter
Grass was a professional sculptor and printmaker; Dario Fo has excelled not only as a dramatist,
but also as an actor, director and stage and costume designer. (Nobel, Pegasos).
Composers and choreographers tend to be equally multitalented. Arnold Schoenberg and
George Gershwin were excellent amateur painters (Lebrecht, 1984); George Hindemith and Igor
Stravinsky (who took lessons from Picasso) sketched; Iannes Xenakis composed architecture as
well as music, often borrowing the visual line of his buildings from his scores. (Matossian,
1986). The choreographer Merce Cunningham has recently published a book of drawings
(Cunningham, 2001); Rod Rodgers, who often set his experimental dance to unusual music, was
also a percussion player, a photographer and graphics designer. (Dunning, 2002) Successful
artists of all kinds, like scientists, are often artistic polymaths.
Many artists have been amateur or even professional scientists as well. The French
composer Olivier Messiaen, for example, was an amateur ornithologist who incorporated bird
song into many of his compositions. George Antheil, whose “Ballet mechanique” revolutionized
modern music, was an amateur endocrinologist and inventor who held key electronics patents
with actress Hedy Lamarr. (Antheil, 1945; Braun, 1997) Cesar Cui and Nicholas Rimsky-
Korsakov were trained as engineers. Alexander Borodin earned his living as a chemist. Sir
Edward Elgar took out several patents on chemical processes. Camille Saint-Saens was an
amateur astronomer. Mikhail Balakirev, Ernest Ansermet, Diana Dabney and Iannes Xenakis
among many other modern composers -- earned advanced degrees in mathematics. (Root-
Bernstein, 2001) Susan Alexjander has drawn upon the science of genetics to inform her latest
compositions. (Alexjander, 1996)
Science avocations and vocations are also prevalent among writers. At least 20 of the 55
Nobel laureates in literature for whom non-writing interests could be documented trained in,
practiced or otherwise immersed themselves in science, engineering or mathematics. (TABLE 2)
Jose Echegaray and Salvatore Quasimodo practiced civil engineering, Echegaray for much of his
literary life. Bertrand Russell, who won a Nobel for his philosophical writings, was also a
mathematician. Alexander Solzhenitsyn taught math and physics for many years. Elias Canetti
took a doctorate in chemistry. (Pribic, 1990) Amongst writers outside the Nobel circle, science is
also a common enterprise. August Strindberg dabbled in chemistry when he was not painting or
taking photographs. (Hjerter, 1986) Beatrix Potter, the author of the famous Peter Rabbit stories,
was an expert on fungi who first suggested (correctly) that lichens were symbiotic plants.
(Linden, 1966) Novelist Vladimir Nabokov, employed at the Harvard museum of natural history
as a lepidopterist, discovered a rare species of butterfly.(Johnson, et al., 1999) H. G. Wells also
took his college degree in science, as has virtually every noteworthy science fiction writer since.
(Asimov, et al., 1985; Clark, 1990) Similarly, a long list of writers that includes William Carlos
Williams, Rabelais, Chekhov, John Keats, Sir Arthur Conan Doyle, A. J. Cronin and Frank
Slaughter have been trained in and have also practiced medicine. (Stone, 1988; Coulehan, 1993)
In light of Snow's "two cultures" thesis, these artist-scientists and scientist-artists are a
surprising lot. And yet, perhaps, not as surprising as all that. The connection between polymath
and creativity has certainly been described before, notably by Eliot Dole Hutchinson in 1959: “It
is not by accident that in the greatest minds professions disappear…. Such men are not scientists,
artists, musicians when they might must as well have been something else. They are creators.”
(Hutchinson, 1959, 150-152) Others have made similar remarks. So the question becomes what
the polymathy-creativity connection means. In particular, what do sciences and arts, or scientists
and artists, share of consequence? What might polymaths tell us about creative thinking?
Scientists and Artists Share Similar Psychological Profiles
One possible explanation for the correlation between creativity in the arts and sciences is
that artists and scientists have similar psychological profiles that are not shared by other
professionals. This explanation appears to have merit. The primary investigator of this
phenomenon was Bernice Eiduson of UCLA who, between 1955 and 1980, explicitly compared a
range of responses to psychological tests in groups of artists, businessmen, and scientists.
Eiduson used four major instruments for investigating the subjects’ psychological profiles: 1)
intensive and extensive interviews concerning themselves, their early development and their
personal history; 2) the Rorschach test; 3) the thematic apperception test; and 4) the Miller
analogies test. Results were rated on a CA-L rating scale of 50 items by three independent
clinical psychologists who did not know the nature of the study or the participants. (Eiduson,
1962; Eiduson, 1966, Eiduson, et al, 1973; Root-Bernstein, et al., 1993)
Eiduson found that both the artistic group and the scientific group could be clearly
differentiated from the business group, but that the artists and scientists could not be
distinguished. Artists for example, tended to have diverse intellectual interests, elaborate
fantasies, to be highly responsive to sensory experiences, and motivated to find diverse ways to
express these experiences. Scientists shared all of these characteristics, whereas business people
were intellectually narrow, reality-centered, and uninterested in sensual experiences or ways to
express them. Altogether, of the 50 cognitive, emotional and motivational variables studied, only
two statistically significant differences between artists and scientists appeared (scientists were
more willing to work in structured situations and were less introspective about sex) whereas 20
statistically significant differences were found between the artists and businessmen and 15
between the scientists and businessmen.
Taking into account the interview material as well, Eiduson concluded as follows: “On
the basis of the clinical experimental data both artists and scientists seem to share the same ways
of thinking about and perceiving problems and situations; seem to share many attitudes about
what they do, respond to the same motivations, and display some of the same personality
attributes. The experimental findings showed that artists and scientists were more alike in their
cognitive characteristics than they were in personality features, but in both of these areas the
persons who were in creative fields were significantly different from persons who had selected
business vocations. Therefore, I feel that this material speaks for a general model of the person
who goes into a creative vocation.” (Eiduson, 1962, x-xi)
Other investigators have also demonstrated cognitive overlaps between artists and
scientists. For instance, numerous studies show that students of science perform significantly
better on tests of visual thinking and visual memory than do students of the humanities, students
of literature, and, surprisingly, students of the arts! (Benbow, 1988; Casey, et al, 1990; Helson
and Crutchfield, 1970; Hermelin, et al., 1986; Krutetskii, 1976; Winner and Casey, 1992) In fact,
visual and spatial thinking tests are among the few reliable predictors of success in science and
engineering. (Humphreys, et al., 1993) And although Richard Mansfield and Thomas Busse
(1981) claim that only a handful of psychological tests have ever shown documented correlations
with demonstrated creativity in the sciences, the three that do are based on arts-related material:
the Strong vocation interest blank test; the Barron-Welsh art scale; and the mosaic construction
On the Strong vocational interest blank test, marking “artist,” “musician” or “author”
were all positively correlated with being ranked as a creative scientist or engineer. Similarly,
creative architects chose the categories of “physicist”, “chemist” or “psychologist” as alternative
careers significantly more often than their average peers. As Eiduson’s study suggested, choosing
business-related preferences such as “accountant”, “production manager”, “purchasing agent”,
“office man” and “salesman” were negatively correlated with creativity for both scientists and
architects. Similarly, most studies of scientists and mathematicians using the Barron-Welsh art
scale and the Mosaic construction test have shown that those identified as creative are more
likely to prefer, as artists do, complex and asymmetrical patterns as opposed to symmetrical ones.
(Mansfield and Busse, 1981) These findings also correlate with an extensive and growing
literature on the importance of aesthetic considerations for creative work in science in which
some scientists refer explicitly to developing their aesthetics through their artistic avocations.
(Root-Bernstein, 1996; Root-Bernstein, 2002; Root-Bernstein, 2003)
These observations suggest that scientists and artists may be being drawn from a single
pool of talent, a suggestion we have found the great art historian and critic, Sir Kenneth Clark
made in 1981: “Art and science,” he wrote, “… are not, as used to be supposed, two contrary
activities, but in fact draw on many of the same capabilities of the human mind…. The
development of science … has touched that part of the human spirit from which art springs, and
has drained away a great deal of what once contributed to art…. We must…. wait patiently for
our faculties to be reunited.” (Clark, 1981: 25, 29) Clark’s observation is well worth further
investigation, particularly as it has important sociological implications.
Arts Proclivities Predict Scientific Success
Given the fact that artistic psychological profiles, and vocational and aesthetic
preferences seem to be correlated with scientific creativity, one might reasonably expect that arts
avocations predict scientific success. Many important scientists have conjectured as much. For
example, Max Planck, the inventor of quantum physics and a pianist who considered a
professional career, wrote in his autobiography that the “pioneering scientist must have an…
artistically creative imagination” (Planck, 1949, 109). Similarly, J. H. Van’t hoff, who would
become the first Nobel prize winner in Chemistry (1901) suggested that scientific imagination is
always mirrored by evidence of non-scientific creativity. Studies of famous living
mathematicians and physicists by P. J. Moebius (1900), Henri Fehr (1912) and Jacques
Hadamard (1945) suggested he was right.
Subsequent studies by the Stanford University group led by Louis Terman confirmed the
polymathy correlation. Terman's student R.K. White produced the first statistical studies of the
versatility of geniuses across all disciplines during the 1930s. Analyzing hundreds of historical
figures, he found that, “the typical genius surpasses the typical college graduate in range of
interests and... [h]e surpasses him in range of ability." (White, 1931, 482) During the 1950s,
another Terman student, Catherine Cox, looked at high IQ individuals and found, in Terman’s
words, that, “there are few persons who achieved great eminence in one field without displaying
more than average ability in one or more other fields.” (Seagoe, 1975: 221) More recent studies
by Roberta Milgram and her colleagues at Tel Aviv University following thousands of teenagers
from military service through the subsequent twenty or so years of their civilian careers have
validated Terman’s conclusion. Milgram reports that school grades, IQ, standardized test scores,
and psychological profiles do not predict career success reliably. The only reliable predictor of
career success in any field is participation of an individual in an intellectually demanding
avocation, such as one of the arts, poetry, music, chess, electronics, etc., over a long period of
time (Milgrim, Hong, Shavit, & Peled, 1997). Polymathy of any sort is highly correlated with
vocational success.
We have found similar correlations among the forty scientists of the Eiduson study.
Eiduson’s group eventually included four Nobel laureates and eleven members of the National
Academy of Sciences (U. S.), at one extreme, and several men who never achieved tenure or
spent their careers in industry, at the other. (Root-Bernstein, et al., 1993) In 1988, Maurine
Bernstein, who had taken over the study when Dr. Eiduson died, Robert Root-Bernstein, and
Helen Garnier sent out a new questionnaire to the scientists and reviewed Dr. Eiduson’s earlier
interviews of her subjects. By analyzing publications, citations rates, and multiple interviews,
they found that although none of the psychological parameters that Eiduson had investigated
correlated with scientific success, statistically significant correlations existed between the
number and type of adult hobbies that a scientist practiced as an adult and his success as a
scientist. (TABLE 3) In particular, scientists who made or collected art, who practiced
photography, or who were active as musicians, were much more likely than their colleagues to
produce one or more papers cited 100 or more times within fifteen years or papers cited ten or
more times in a single year (groupings we called citation clusters). All of the Nobel laureates in
the study were the top citation cluster as were most of the members of the U. S. National
Academy of Sciences. The more artistic hobbies a scientist engaged in as an adult, the greater
their probability of achieving eminence within science. (Root-Bernstein, et al., 1995)
Equally interesting was the finding that the cognitive styles of the scientists were
correlated to their avocations. Those who engaged in visual arts or music tended to employ
various modes of thinking, especially visual and kinesthetic, at significantly higher rates than
those who had primarily word-related hobbies. Writers tended to think in verbal patterns.
Sculptors tended to be non-visual and kinesthetic thinkers. Those who engaged in electronics-
related hobbies employed a wide range of mental tools. (Root-Bernstein, et al., 1995)
In addition, the study found that different modes of problem-solving also correlated with
scientific success. Scientists who reported solving problems using primarily visual forms of
thinking tended to have higher impact and publication cluster rankings than did scientists who
used primarily verbal and symbolic forms of thinking. The wider the range of thinking modes a
scientist used, the more likely they were to be in the most successful group. (Root-Bernstein, et
al., 1995)
These results raise various interesting possibilities. Do avocations build cognitive
strengths, or merely mirror them? Do hobbies represent artistic outlets for the scientists’ existing
mental strengths or do hobbies create the cognitive bases upon which creative science can be
developed? These data obviously do not answer these important questions, but they do make
them significant. Likely, future research will reveal that, as with all human traits, innate talents
are strengthened by the practice of artistic avocations benefiting vocational skills, and vice versa.
As surprising as the finding that artistic avocations correlate with scientific success may
be, it appears to be quite general. We are currently at work on a follow-up study of all Nobel
Prize winners that is validating our results from the Eiduson study. So far, we have only
completed studying the 134 chemists who have won Nobel prizes between 1901 and 2000. We
were fortunate to find a control group with which to compare these extraordinary scientists in the
form of a survey of avocations sent out in 1936 to the members of Sigma Xi, the National
Research Society. (Ward, et al., 1936) Of the approximately 42,500 members of Sigma Xi at that
time, just over 4000 responded to the survey indicating one or more avocations ranging from
artistic ones to gardening, athletics, collecting stamps, coins, or fossils, to just reading. Using the
Sigma Xi data as a baseline for calculating distribution and frequency of various hobbies, the
same data were collected from biographical and autobiographical sources for the Nobel laureates.
For almost all art-related avocations other than photography, Nobel laureates have statistically
significantly greater participation in arts avocations as adults than do their peers. (TABLE 4)
Particularly noteworthy is the fact that Nobel prizewinners practice poetry and other forms of
creative writing and the visual arts at rates many times those of average scientists. While none of
the thousands of Sigma Xi members reported dance as an avocation or recreation, two of the
Nobel laureates did. Preliminary analysis of the results for Nobel laureates in Medicine and in
Physics are showing the same strong trends. We therefore feel confident in saying that the most
creative scientists not only have the psychological profiles of artists, but more often than not, are
Scientists and Artists Employ Common Tools for Thinking
What benefit can there be for the scientist to be an artist or the artist, a scientist? One
possibility is that these apparently disparate professions share common ways of creative problem-
raising and problem-solving. Our fourth correlation, therefore, concerns the common cognitive
processes shared by artists and scientists. Many individuals, including Arthur Koestler (1964),
Loren Eisely (1978) and Jacob Bronowski (1967) (themselves polymathic individuals who
straddled the arts and sciences), have already noted that the creative process as practiced by
artists and scientists is virtually identical. One might expect to find, then, that particular cognitive
modes used by scientists and artists will also be the same. We spent more than a decade reading
hundreds of autobiographical, biographical, interview and archival sources in order to determine
what creative people in many disciplines say about how they actually think when solving
disciplinary problems. Our book-length study, which appeared in 1999 as Sparks of Genius,
proposed that individuals across the arts and sciences used a similar vocabulary to describe the
use of thirteen intuitive, imaginative processes. These "tools for thinking" include observing,
imaging, abstracting, pattern recognition, pattern forming, analogizing, empathizing, body
thinking, dimensional thinking, modeling, playing, transforming, and synthesizing -- all
categories that emerged clearly from the sources themselves. While some of these mental tools
are well-known to psychologists (e.g., observing, imaging and pattern recognition), others are in
need of much more study (e.g., analogizing, empathizing and modeling).
Space does not permit a full description of all thirteen tools here, but several examples
will suffice to demonstrate how artists and scientists similarly define and use them. Observing,
an essential skill, means paying attention to what is seen, but also what is heard, touched,
smelled, tasted and felt within the body. (Berg, 1983) It involves actively seeing rather than
passively looking, listening rather than hearing, thoughtfully being in motion rather than merely
moving. Georgia o’Keeffe clarified the distinction when she recounted how a teacher “started me
looking at things, looking very carefully at details.” “Still--in a way--nobody sees a flower--
really--it is so small--we haven’t the time--and to see takes time, like to have a friend takes time.”
(Root-Bernstein, et al., 1999: 32) Nobel prizewinning ethologist Konrad Lorenz said virtually the
same thing: observing takes the “patience of a yogi.” “To really understand animals and their
behavior you must have...the patience to look at them long enough to see something.” (Root-
Bernstein, et al., 1999: 36)
Imaging is another mental tool shared by artists and scientists. It is the ability to recall or
imagine the sensations and feelings we observe in the absence of external stimulation. We can
image visually and also aurally, as well as with smells, tastes, tactile and muscular feelings. (Roe,
1951:Fergusson, 1992; Barlow, et al., 1990) Sir James Black, pharmacologist and Nobel prize
winner, says that the focus of his thinking “is an imaginative sense, entirely open-ended and
entirely pictorial. That is a vital part of my life. I daydream like can have all these
‘chemical’ structures in your head, turning and tumbling and moving” (Root-Bernstein, et al.,
1999: 53). Composer Henry Cowell said similarly that, "The most perfect [musical] instrument in
the world is the composer's mind. Every conceivable tone-quality and beauty of nuance, every
harmony and disharmony, of any number of simultaneous melodies can be heard at will by the
trained composer; he can hear not only the sound of any instrument or combination of
insturments, but also an almost infinite number of sounds which cannot yet be produced on any
instrument." (Root-Bernstein, et al., 1999: 59) Scientists and artists share an ability to create
imaginary worlds within their minds.
Observing and imaging produce data that are too complicated to understand in
unmodified form. Abstracting, whether in science or art, means focusing on a single property of
a thing or process in order to simplify it, grasp its essence. Physicist Werner Heisenberg, for
example, defined abstracting as “the possibility of considering an object or group of objects
under one viewpoint while disregarding all other properties of the object. The essence of
abstraction consists in singling out one feature, which, in contrast to other properties, is
considered to be particularly important.” This process of eliminating unnecessary information
while retaining the integrity of an idea or thing is a “step toward greater generality." (Root-
Bernstein, et al., 1999: 72-73) Picasso agreed. “To arrive at abstraction,” he said, “it is always
necessary to begin with a concrete reality.... you must always start with something. Afterward
you can remove all traces of reality. There’s no danger then, anyway, because the idea of the
object will have left an indelible mark. It is what started the artist off, excited his ideas, and
stirred his emotions.” (Root-Bernstein, 1999: 71-2)
Once an artist or scientist has found a powerful abstraction, he or she naturally wants to
know how generally it can be applied. This process involves pattern recognition, the ability to
organize the random events we see, hear, or feel by grouping them. Virginia Woolf, for one,
consciously explored pattern recognition in her work. As she developed scenes and characters
she felt that she “put the severed parts writing I seem to be discovering what belongs
to what... From this I reach what I might call a philosophy; at any rate it is a constant idea of
mine; that behind the cotton wool [of daily events lived unconsciously] is a hidden pattern.”
(Root-Bernstein, et al., 1999; 128) Her purpose in writing was to make that pattern manifest.
Many scientists similarly view their purpose as finding the patterns within apparently unrelated
data. Nobel laureate Christiane Nusslein-Volhard not only designs her own complex puzzles as
an avocation, but likens her embryological work to assembling “pieces of a jigsaw puzzle.” “The
most important thing is not any one particular piece, but finding enough pieces and enough
connections between them to recognize the whole picture.” – and to recognize the pattern of the
whole picture before you have all the pieces! (Root-Bernstein, 1999: 104-5, 111)
For many creative people, abstractions and patterns are literally felt within the body rather
than seen or heard. Such body thinking relies on emotions and proprioceptive sensations of
body movement, body tension, and body balance. Sculptor Auguste Rodin wrote that his
“Thinker,” meant to represent creative individuals of every kind, thought “not only with his
brain, with his knitted brow, his distended nostrils, and compressed lips, but with every muscle
of his arms, back and legs, with his clenched fist and gripping toes.” (Root-Bernstein, 1999: 168-
9) Thinking, Rodin tells us, integrally involves how we feel! M.I.T. Professor Cyril Stanley
Smith, who was considered by many people to be the greatest metallurgist of the past century,
certainly found it so: “In the long gone days when I was developing alloys...I certainly came to
have a very strong feeling of natural understanding, a feeling of how I would behave if I were a
certain alloy, a sense of hardness and softness and conductivity and fusibility and deformability
and brittleness -- all in a curiously internal and quite literally sensual way even before I had
touched the metal.” (Root-Bernstein, 1999: 171)
Some scientists and artists go even further, not only feeling bodily a thing or idea, but
empathizing with it, feeling as it would feel. Like an actor, novelist or playwright, Nobel prize-
winning chemist Peter Debye confessed to solving his problems by thinking about what the
characters in his scenario felt -- since these were molecules he asked himself, “what does the
carbon atom want to do?” Jonas Salk said that he solved the polio vaccine problem by
“imagining how the virus would behave.”] Philosopher Karl Popper even argued that "the most
helpful suggestion that can be to how one may get new ideas in general [is]...
'sympathetic intuition' or 'empathy'... You should enter into your problem situation in such a way
that you almost become part of it." (Root-Bernstein, et al., 1999:. 187)
The result of using these mental tools is what chemist-philosopher Michael Polanyi has
called "personal knowledge" -- an intuitive, sensual, emotional, organic understanding of how
things behave or what they mean. (Polanyi, 1958) Polanyi's emphasis on "personal knowledge" is
particularly noteworthy, because so many philosophers and cognitive scientists reject the
possibility that thinking can occur in the absence of verbal or logical formulations. Yet a very
large number of the people we have studied describe knowing something intuitively without
initially being able to express their understanding.
The rub of intuitive understanding, of course, is that such knowledge is necessarily
private. Consequently, many artists and scientists recognize as a key step in their creative process
the difficult one of transforming imagistic, corporal, empathic ideas into the public language of
words, numbers, images, sounds, or movement. They translate subjective observations, images,
patterns, and body feelings into cogent, disciplinary products that can be reproduced and
described objectively. Poet Gary Snyder says that it is a three-step process for him: "The first step
is the rhythmic measure, the second step is a set of preverbal visual images which move to the
rhythmic measure, and the third step is embodying it in words." (Root-Bernstein, 1999: 8-9)
Einstein, who confessed to solving his physics problems in images and muscular feelings, wrote
similarly that "[c]onventional words or other signs [presumably mathematical] have to be sought
for laboriously only in a secondary stage, when the associative play [of images and feelings]... is
sufficiently established and can be reproduced at will." (Root-Bernstein, et al., 1999: 5) A
scientist does not think in mathematical formula, Einstein observed; nor does a poet imagine in
words -- a point to which we return below in our conclusion. Suffice it to say here that the
admonition to "think before we speak" is more insightful than first appears.
Once it is recognized that creative thinking takes place in intuitive, imagistic and private
forms before symbolic communication to others, the value of polymathy to the inventive
individual begins to clarify. The individual’s choice of public discourse is what determines the
domain to which his or her ideas contribute rather than the way in which the ideas are initially
conceived. Polymaths express their personal insights in several domains in order to maximize the
process of communication. Moreover, each expression captures different elements of a single
insight. In the end, the polymathic, creative individual not only feels that she knows, but knows
what she feels in several communicable ways, thereby combining subjective and objective forms
of understanding synthetically. We call this synthetic form of understanding synosia from the
Greek roots of the words synaesthesia (a combining of the senses) and gnosis (knowledge). We
believe along with philosopher John Dewey and historian of science Howard Gruber that the
ability to form integrated networks of enterprise between many avocations and many ways of
understanding things is what forms the basis of creative thinking. (Dewey, 1934; Gruber, 1988)
Science Fosters Art and Art Fosters Science
If scientists and artists really think the same way, then it should follow that they can also
benefit from insights obtained in the complementary discipline. Art, in short, should foster better
science, for, as historian of technology David Pye has written, “One who is capable of invention
as an artist is commonly capable also of useful invention” in general. (Ferguson, 1992, 23-26)
And so we come to our fifth creative correlation between the arts and sciences, which is that
artists and scientists often recognize and utilize arts-sciences interactions in their work.
Roughly one-fifth of Nobel laureates in literature have found rich harvest in the study of
natural history generally and Darwinian evolution specifically. Sully Prudhomme, whose taste for
mathematics and the natural sciences dictated the content of many literary meditations, was
known for his “scientific poetry” and philosophical essays on scientific inquiry. Maurice
Maeterlinck, best known for his symbolist stories and plays, not only kept bees in his garden but
he wrote about them -- and termites, ants and flowers as well -- in scientifically accurate essays
meant to probe natural analogies to human behavior. At one time or another in their careers, Karl
Gjellerup, Frans Eemil Sillanppa, Johannes Jensen and John Steinbeck all parlayed an intense
interest in Darwinian evolution and other sceintific theories into thematic materials driving their
novels, poetry, plays and essays. (Nobel; Pegasos; Pribic, 1990) Jensen explicitly recognized the
connection between his scientific avocation and his literary recreations of large sweeps of human
history. “The grounding in natural sciences which I obtained in the course of my medical studies,
including preliminary examinations in botany, zoology, physics, and chemistry,” he wrote in his
Nobel autobiography, “was to become decisive in determining the trend of my literary work.”
(Nobel) In the six-volume epic cycle which earned him the Nobel, this trend involved a personal
interpretation of evolutionary theory and its moral implications as it applied to the cultural past
and present. John Steinbeck similarly meshed scientific and literary interests. In his collaboration
with the ecologist Ed Ricketts on The Sea of Cortez (1941), Steinbeck not only returned to the
marine biology he had studied in college, he determined that the shaping of science writing was
as creative an act as the shaping of his fiction. Moreover, he used Rickett’s conceptual insights
into the interrelated ecology of all life in To A God Unknown and other novels. (Pegasos; Pribic,
Science has also have a tremendous affect the development of the arts through studies of
perception, color theory, perspective and other novel geometries, and the development of new
techniques and instruments. A vast literature exists on this topic, so we will not describe it here.
(e.g., Waddington, 1969; Vitz and Glimcher, 1983; Kemp, 1990; Strosberg, 1999) Suffice it to
say, art is permeated with scientific and technological know-how transferred there both by
scientific artists and artistic scientists. A phenomenon that is much less documented and, in fact
largely unknown, is that science is also permeated with art. Historian Brooke Hindle has in fact
spent a lifetime documenting art-to-science creativity for a wide range of artists-turned-inventors.
His most famous case study involved two of America's greatest inventors, Samuel Morse and
Robert Fulton, both of whom established themselves among the very best American painters
before turning, in middle age, to careers as inventors. (Hindle, 1981) More to the point, for both
men, artistic training made possible and informed the nature of their inventions. Just to give one
example, Morse's first working model of a telegraph was made out of a canvas stretcher adapted
from his painting days.
Hindle suggests in this case and many other cases that technical and manipulative skills
developed in art were essential to industrial invention. Too, a great many eminent anatomists of
the nineteenth and early twentieth centuries -- Francis Seymour Hayden, Nobel laureates
Santiago Ramon y Cajal and Emilio Golgi -- formally trained in visual arts, because, as Hayden
put it, “How much sooner would the eye [trained to draw] … learn to gauge the aberrations
which make up the facies of the disease; how much better the hand, trained to portray them
accurately, be able to direct with precision and safety the course of the knife!” (Zigrosser, 148;
see also Berg, 1983) In other sciences, as well, artists have used their highly honed observational
skills to discover what others overlooked. The protective coloration and patterning of animals
that we call camouflage was discovered not by a biologist but by a late 19th century portraitist
and painter of angels, Abbott Thayer, whose hobby was evolutionary theory. (Root-Bernstein,
Artists also invent new structures that scientists then discover in nature. Virologists
attempting to understand the structure of the protein shells that surround spherical viruses such as
polio during the 1950s were directed by knowledge of architect-writer Buckminster Fuller’s
geodesic structures. Fuller's architecture also became the model for 60-unit carbon spheres aptly
named buckminsterfullerenes, which are the most stable chemicals in the universe. Their
inventor, Nobel laureate Hans Kroto, is himself an amateur artist who was aware of Fuller's
concepts. (Root-Bernstein, 2003) Cambridge physicist and artist Roger Penrose has also invented
a new fundamental structure by playing around with variations of Escher-style tilings called
aperiodic, or non-repeating tilings. He soon turned his recreation into a professional asset by
working out the mathematical properties of such aperiodic tilings and giving the field its first
complete theory. Martin Gardner's mathematical recreations column in Scientific American
brought Penrose's avocation to the attention of a broad array of scientists, some of whom
recognized that aperiodic tilings explain anomalous crystal structures in metal alloys called
"quasicrystals". (Root-Bernstein, 2000) In this manner, artistic exploration has led to multiple
scientific insights. Indeed, we would argue, artistic and scientific thinking are not two different
kinds of cognitive activity, but two aspects of the same creative impulse.
Conclusions: Creativity as Conceptual Complementarity
To summarize, we have found that artists and scientists, and also artistic and scientific
thinking, are more similar than they are different. Many scientists pursue artistic avocations
throughout their lives. Many artists reciprocate. Psychologically, scientists and artists appear to
be very similar to each other in cognitive and personality factors and quite different from people
who choose business- and humanities-related vocations, suggesting that scientists and artists may
be drawn from a single, discrete pool of talent. Scientists and artists use a common set of
intuitive and personal "thinking tools" for recognizing and solving their problems, and practice
using these mental "tools" in one field may help to foster their use in other fields. The pursuit of
artistic activities by scientists correlates significantly with success as a scientist. We presume, but
currently lack appropriate control groups, that the same correlation exists between polymathy and
success in the arts. We hypothesize further that polymathy correlates with success in any
discipline, as Roberta Milgram's data suggest. Certainly, many scientists, artists, and writers are
explicitly aware that they have benefitted from integrating disparate disciplinary. Thus, arts foster
scientific creativity and conversely science fosters artistic creativity.
Should we recommend, then, that all students, regardless of vocational goals or personal
preferences take classes in painting, printing, sculpting, music composition and performance,
dance, theater, creative writing, mathematics, and the sciences, as a way of fostering creative
potential? If only it were so simple! No; what our research shows is something more subtle and
difficult to achieve, and that is that creative people integrate apparently disparate skills, talents,
and activities into a synergistic whole. A functional interaction must exist between intellectual
and aesthetic activities to make avocations of value to vocational goals. Dewey has called this
polymathic interrelatedness “integrated activity sets”(Dewey, 1934), Gruber with “networks of
enterprise.” (Gruber, 1988) and we have used the term “correlative talents.” (Root-Bernstein,
1989) All three terms refer to an ability to recognize useful points of contact and analogous skills
among an apparently diverse set of interests. Merely requiring a "distribution requirement" of
"creative" activities will not, therefore, achieve synthetic talent integration.
The phenomenon of correlative talents does, however, have immediate implications for
cognitive studies. Howard Gardner (1999) and Mihalyi Csikszentmihalyi (1996) have made it
fashionable to argue that creativity occurs only within recognized domains of cognitive activity
such as visuo-spatial or musical or kinesthetic or logico-mathematical. Gardner has gone so far as
to doubt the possibility of "horizontal faculties" that would allow trans-disciplinary or trans-
domain creativity. (Gardner, 1999: 104) Yet the pervasiveness of polymathy among innovators in
both the sciences and arts argues strongly for the existence of "horizontal faculties" of some sort.
We suggest that one of the primary reasons that Gardner and Csikszentmihalyi ignore
these horizontal faculties is that they have focussed their research on the unique types of products
that characterize disciplines or domains rather than on common creative processes that transcend
them. This focus on product is built into their work from the outset. Gardner's "frames of mind,"
for example, are defined by the existence of unique, domain-specific languages and artifacts by
which they can be identified. (Gardner, 1999) His mistake, from our point of view, has been to
confuse the formal mode of communication chosen by individual creators with the mode in
which they do their creative thinking. As we have pointed out above and documented elsewhere
(Root-Bernstein and Root-Bernstein, 1999; Root-Bernstein, 2001; 2002; 2003), creative people
use personal and intuitive “tools for thinking" to achieve their insights, resorting only in an
explicitly secondary step to translating their personal knowledge into a formal language in order
to communicate with other people. While we have no doubt that Gardner and Csikszentmihalyi
are correct to contend that most (but not all!) people have a preferred mode of communication,
we strongly object to their assumption that people think in the same terms that they use to
communicate. Our research suggests that thinking and communicating require very different
skills. Creative artifacts and expressive products are transformations of thought and therefore
unreliable guides to the processes by which those thoughts are generated. Languages are certainly
based in cognition but cognition is not based in language. (Root-Bernstein and Root-Bernstein,
1999; Barlow, Blakemore and Weston-Smith, 1986)
One consequence of our view that cognition and communication are separate skills is that
we find the concepts of "domains," "disciplines," and even "vocations" and "avocations"
problematic. Hutchinson, whom we quoted above, hit the nail on the head when he said that for
the most creative people, disciplines disappear. Creative people tend to have multiple forms of
training, several kinds of jobs, and many ways of expressing themselves that ignore accepted
categories and expectations. (Root-Bernstein and Root-Bernstein, 1999: Chs. 15&16) How, for
example,shall we describe Sophya Kovalevskaya, who attained international recognition as both
a poet-playwright and also as one of the greatest mathematicians of the twentieth century? Each
activity fed the other in her mind: "You are surprised at my working simultaneously in literature
and in mathematics. Many people who have never had occasion to learn what mathematics is
confuse it with arithmetic and consider it a dry and arid science. In actual fact, it is the science
which demands the utmost imagination...The poet must see what other do not see, must see more
deeply than other people. And the mathematician must do the same." (Kovalevskaya, 1978, 102-
Getting a grasp on polymaths is difficult because the very categories embedded in our
language militate against a satisfactory description of trans-disciplinary activity. Is Desmond
Morris a "scientist" because he spent much of his life as a Professor of Zoology at Oxford
University; or is he a "writer" because he has written dozens of best-selling books; or is he a
"filmmaker" because he has created art films and dozens of documentaries on animal and human
behavior for the BBC, The Learning Channel and other stations; or is he an "artist" because he
has spent more time creating and showing his Surrealist paintings than doing anything else?
Morris, whose passport labels him as a zoologist, identifies himself as none of these things. “I
never thought of myself as a zoologist who painted or as a painter who was interested in zoology.
They are both equally important to me because they both involve visual exploration.” (Morris,
1987, 9) He goes on to say that,
If my paintings do nothing else, they will serve to demonstrate that such titles are
misleading. In reality, people today are not scientists or artists... they are explorers or non-
explorers, and the context of their explorations is of secondary importance. Painting is no
longer merely a craft, it is a form of personal research.... So, in the end, I do not think of
myself as being part scientist and part artist, but simply as being an explorer, part
objective and part subjective. (Morris, 1971, 27)
Elsewhere Morris calls for the abolition of categorical thinking that strikes us as a fitting
summary of our own argument as well: "Perhaps the time will come when we will give up the
folly of separating sub-adults into the imaginative and the analytical -- artists and scientistsand
encourage them to be both at once." (Remy, 1991, 18)
So many innovative people are anomolously "both at once" that those who study
creativity must pay attention. We conclude by suggesting that it is the very fact that polymaths
cannot be pigeon-holed into one discipline or domain that accounts for their extraordinary
creativity. Innovations, by definition, are effective surprises that bring together problems,
concepts, techniques and materials that were previously unrelated. (Root-Bernstein, 1989) By
exploring many different ways of being "small c" creative, polymaths master an unusually wide
range of imaginative and technical skills that reveal unexpected analogies between weakly
related fields. Their innovations create formal bridges where none existed before, opening the
way for "big C" creativity that redefines disciplinary boundaries and cognitive domains.
We further suggest that the fact that creative polymaths transcend domains explains why
"genius" is so often associated with a struggle for recognition, while "normal" activities (in the
Kuhnian sense) are often highly rewarded, but rarely remembered by posterity. Creativity is
revealed through the intellectual and social redefining of boundaries, of which the creative
product is simply a physical manifestation. The reason that the mimic or forger is not considered
creative, though his or her product may be indistinguishable from the original, is because
creativity lies not in the product, but in the process of bridging and linking domains. For Creative
people, C. P. Snow's "two cultures" have never existed. (Root-Bernstein, et al., 1995; Root-
Bernstein and Root-Bernstein, 1999) If there is a divide in creative culture that withstands
scrutiny, it is between those who alter disciplines and their boundaries -- and those who do not.
The first are likely to cultivate highly correlative, polymathic talents. The second are more likely
to be highly specialized individuals and less likely to combine relevant avocations with vocation.
Only when the imaginative processes that enable polymaths to link knowledge in new and
extraordinary ways and the correlative talents that allow them to transcend the public discourse
of disciplines are more fully understood, will creative thinking yield up its secrets to cognitive
Alexjander, S. (1996). Sequencia. Logos Series CD, Berkeley, CA: Science and the Arts
Antheil, G. (1945). Bad Boy of Music. Garden City, N.Y.: Doubleday.
Asimov, I., Greenberg, M., Waugh, C. (1985). Great Science Fiction Stories by the
World's Great Scientists. New York: Primus--Donald Fine.
Barlow, H., Blaekmore, C., Weston-Smith, M. (1990). Images and Understanding. Cambridge:
Cambridge University Press.
Benbow, C. (1988). Neuropsychological perspectives on mathematical talent. In L. Obler and D.
Fein (Eds). The Exceptional Brain: Neuropsychology of Talent and Special Abilities.
New York: Guilford, pp. 48-69.
Berg, G., ed. (1983). The Visual Arts and Medical Education. Carbondale, IL: Southerr Illinois
University Press.
Borodin, A. (1995). String Quartets Nos. 1&2. The Lark Quartet. New York: Arabesque
Braun, H.-J. (1997). Advanced weaponry of the stars. Invention & Technology 12: 10-17.
Bronowski, J. (1967). Scientific Genius and Creativity. New York: W. H. Freeman.
Casey, M. B, Winner, E., Brabeck, M, Sulivan, K. (1990). Visual-spatial abilities in art, maths
and science majors: Effects of sex, family handedness and spatial experience. In K.
Gihooly, M. Keane, R. Logie, G. Erdo (Eds.) Lines of Thinking: Reflections on the
Psychology of Thought. New York: Wiley, pp. 275-294.
Clarke, A. C. (1989). Astounding Days. London: Gollancz.
Clark, K. (1981). Moments of Vision. London: Murray.
Coulehan, Jack. (1993). Physician as poet, poem as patient. Poets & Writers Magazine,
Mar./Apr.: 57-59.
Csikszentmihalyi, M. (1996). Creativity. New York: Harper.
Cunningham, M. (2001). Other Animals: Drawings and Journals. New York: Aperture.
Davy, H. (1840). Parallels between art and science. The Collected Works of Sir Humphrey Davy,
John Davy, ed. London: Smith and Cornhill. Vol. 8, 306-308.
Dewey, J. (1934). Art as Experience. New York: Minton, Balch.
Djerassi, C., Hoffmann, R. (2001). Oxygen.Weinheim: Willey-VCH.
Dunning, J. (2002). Rod Rodgers, Choreographer of Modern Dance, Dies at 64. New York
Times (March 29), A22.
Eiduson, B. (1962). Scientists. Their Psychological World. New York: Basic Books.
Eiduson, B. (1966). Productivity rate in research scientists. American Scientist 54: 57-63.
Eiduson, B., Bechman, L. (Eds.) (1973). Science as a Career Choice. New York: Russell Sage.
Eisely, L. (1978). The Star Thrower. New York: Times Books.
Fehr, H. (1912). Enquete de L’Enseignmement Mathematique sur la Methode de Travail des
Mathematiciens. Paris: Gauthier-Villars; Geneve; George et Cie.
Ferguson, E. S. (1992). Engineering and the Mind's Eye. Cambridge, MA: MIT Press.
Gardner, H. (1999). Intelligence Reframed. New York: Basic Books.
Gruber, H. (1988). The evolving systems approach to creative work. Creativity Research Journal
1: 27-51.
Guillemin, R. (2002). Electronic art displayed at
Hadamard, J. (1945). The Psychology of Invention in the Mathematical Field. Princeton:
Princeton University Press.
Helson, R., Crutchfield, R. (1970). Creative types in mathematics. Journal of Personality, 38:
Hermelin, B. O’Connor, N. (1986). Spatial representations in mathematically and in artitically
gifted children. British Journal of Educational Psychology, 56: 150-157.
Herschel, W. (1995). Music by the Father of Modern Astronomy. The Mozart Orchestra.
Providence, RI: Newport Classic.
Hindle, B. (1981). Emulation and Invention. New York: New York University Press.
Hjerter, K. (1986). Doubly Gifted. The Author as Visual Artist. New York: Abrams.
Hoffmann, R. (1988). How I work as poet and scientist. The Scientist (21 March): 10.
Humphreys, L. G., Lubinski, D., Yao, G. (1993). Utility of predicting group membership in the
role of spacial visualization in becoming an engineer, physical scientist, or artist. Journal
of Applied Psychology 78: 250-261.
Hutchinson, E. D. (1959). How to Think Creatively. New York: Abingdon-Cokesbury.
Jackson, A. Y. (1943). Banting as an Artist. Toronto: Ryerson.
Jaffe, A., ed. (1979). C. G. Jung. Word and Image. Princeton: Princeton University Press.
James, L. K., ed. (1993). Nobel Laureates in Chemistry, 1901-1992. Washington, D.C..:
American Chemical Society and Chemical Heritage Foundation
Johnson, K., Coates. S. (1999). Nabokov's Blues. The Scientific Odyssey of a Literary Genius.
Cambridge, MA: Zoland.
Kaprowski, H. (1999). Fleeting Thoughts. Songs and Chamber Music. Woburn, M.A.: MMC
Kemp, M. (1990). The Science of Art. New Haven: Yale University Press.
Koestler, A. (1964). The Act of Creation. London: Hutchinson.
Kovalevskaya, S. (1978). A Russian Childhood. Trans. B. Stillman. New York: Springer-Verlag.
Lebrecht, N. (1984). Schoenberg's Other Compositions. Sunday Times (London) Magazine, 11
March, 36-43.
Linden, L. (1966). The Journal of Beatrix Potter from 1881-1897. London: Frederick Warne.
Mansfield, R. S., and Busse, T. V. (1981). The Psychology of Creativity and Discovery.
Scientists and Their Work. Chicago: Nelson-Hall.
Matossian, N. (1986). Xenakis. London: Kahn & Averill.
Milgrim, R.M., Hong, E., Shavit, Y.W., & Peled, R.W. (1997). Out of school activityies in gifted
adolescents as a predictor of vocational choice and work accomplishment in young adults.
Journal of Secondary Gifted Education, 8, 111-120.
Moebius, P. J. (1900). Ueber die Anlage zur Mathetmatik. Leipzig: Johan Umbrosius Barth.
Morris, D. (1971). The naked artist. The Observer Magazine, 10 October, pp. 22-25.
Morris, D. (1987). The Secret Surrealist. The Paintings of Desmond Morris. Oxford: Phaidon.
Nobel E-Museum. (2002) Official Web Site of The Nobel Foundation. The Nobel Foundation.
Pegasos. (1999) A literature related resource site. Kuusankosken kaupunginkirjasto, Finland.
Planck, M. (1949). Scientific Autobiography and Other Papers., F. Gaynor, trans. New York:
Philosophical Library.
Polanyi, M. (1958). Personal Knowledge: Towards a Post-Critical Philosophy. Chicago: Chicago
University Press.
Pribic, Rado, (ed.). (1990). Nobel Laureates in Literature, A Biographical Dictionary. New York:
Garland Publishing, Inc.
Ramon y Cajal, S. (1937). Recollections of My Life. E. H. Craigie and J. Cano, trans.
Cambridge, M.A.: MIT Press.
Remy, M. (1991). The Surrealist World of Desmond Morris. L. Sagaru, trans. London: Jonathan
Roe, A. (1951). A study of imagery in research scientists. Journal of Personality 19: 459-470.
Root-Bernstein, R. S. (1987). Harmony and beauty in biomedical research. Journal of Molecular
and Cellular Cardiology 19: 1-9.
Root-Bernstein, R. S. (1989). Discovering. Cambridge, MA: Harvard University Press. .
Root-Bernstein, R. S. (1996). The sciences and arts share a common creative aesthetic. In: A. I.
Tauber, (ed.) The Elusive Synthesis: Aesthetics and Science. Netherlands: Kluwer, 49-82.
Root-Bernstein, R. S. (2000). Art advances science. Nature 407: 134.
Root-Bernstein, R. S. (2001). Music, science, and creativity. Leonardo 34: 63-68.
Root-Bernstein, R. S. (2002). Aesthetic cognition. International Journal of the Philosophy of
Science, 16: 61-77.
Root-Bernstein, R. S. (2003). The Art of Innovation: Polymaths and the Universality of the
Creative Process. In: Shavanina, L., (ed.) International Handbook of Innovation.
Amsterdam: Elsevier.
Root-Bernstein, R. S., Bernstein, M. & Garnier, H. (1993). Identification of scientists making
long-term high-impact contributions, with notes on their methods of working. Creativity
Research Journal 6: 329-343.
Root-Bernstein, R. S., Bernstein, M. & Garnier, H. (1995). Correlations between avocations,
ascientific style, work habits, and professional impact of scientists. Creativity Research
Journal 8: 115-137.
Root-Bernstein, R. S., Root-Bernstein, M. M. (1999). Sparks of Genius. The Thirteen Thinking
Tools of the World's Most Creative People. Boston: Houghton Mifflin.
Seagoe, M. (1975). Terman and the Gifted. Los Altos, CA: W. Kaufmann.
Snow, C. P. (1964). The Two Cultures: and A Second Look. Cambridge: Cambridge University
Steinbeck, J., and Ricketts, E.F. (1941/1971). Sea of Cortez. Mamaroneck, NY: Paul P. Appel.
Stone, J. (1988). Listening to the patient. New York Times Magazine, 12 June, 108-109.
Strosberg, E. (1999). Art and Science. Paris: UNESCO.
Szladits, L., and Simmonds, H. (1969). Pen & Brush. The Author as Artist. New York: The New
York Public Library.
Van’t Hoff, J. H. (1878). Imagination in Science. Amsterdam. Trans. G. F. Springer (1967)
Molecular Biology, Biochemistry and Biophysics, 1: 1-18.
Vitz, P. C., Glimcher, A. B. (1984). Modern Art and Modern Science. The Parallel Analysis of
Vision. New York: Praeger.
Ward, H. B., Ellery, E. (eds.) (1936). Sigma Xi Half Century Record and History. Schenectady,
N.Y.:Union College.
White, R. K. (1931). The versatility of genius. Journal of Social Psychology 2: 482.
Vallery-Radot, M. (1987). Pasteur dessins et pastels. Paris: Hervas.
Waddington, C. H. (1969). Behind Appearance. A Study of the Relations Between Painting and
the Natural Sciences in This Century. Cambridge, MA: MIT Press.
Winner, E., Casey, M. B. 1992. Cognitive profiles of artists. In G. C. Cupchick and J. Laszlo,
eds. Emerging Visions of the Aesthetic Process: Psychology, Semiology, and Philosophy.
Cambridge: Cambridge University Press, pp. 154-170.
Zigrosser, C., ed. (1976). Ars Medica: A collection of Medical Prints. Philadelphia: Philadelphia
Museum of Art.
LITERATURE, 1901--2002
/ X?
/ X
X / X
* other than writing, as director, actor
TOTAL: Between 31 and 35 literature laureates had at least one other art (a)vocation out of a total 98
laureates. No information on non-writing activities found for 43 of the laureates.
SOURCES: Pribic, 1990; Nobel website; Pegasos website.
at some time
TOTAL: 18-20 out of 98 recipients, 1901-2002. No information on non-writing interests found for 43 larueates.
SOURCES: Pribic, 1990; Nobel website; Pegasos website.
B = CHI-SQUARE STATISTICS * P < .10 ** P < .05 *** P < .01
24.6 **
11.9 **
4.4 **
9.0 **
5.2 ***
1.5 **
3.7 ***
3.7 ***
1.5 **
0.7 **
0.7 **
1.4 +++
5.2 ***
17.2 ***
10.4 **
12.7 **
** = p < .01 ;*** = p < .001 chi-squared analysis using respondents
+++ probability cannot be calculated
CUM = cumulative
ni = no information available
~ c. 42,500 MEMBERS
... There is also evidence that gifted students employ more metacognitive strategies during learning than their nongifted peers [38,39], and gifted students are generally better at assessing their abilities for a learning task than their nongifted peers [40,41]. Then, gifted students are generally able to keep their attention on a problem or task in ways their nongifted peers cannot [41][42][43][44][45][46]. ...
... In relation to the results of previous literature [38,[44][45][46] to investigate whether gifted children show a higher level of performance in CT abilities than non-gifted children; 2. ...
... In fact, giftedness predicts CT skills and also the ability to solve problems [10,11]. Furthermore, these findings are also explained by the fact that gifted students use a wider variety of strategies when solving problems than their peers [36,37] and they are generally able to keep their attention on a problem or task in ways that their non-gifted peers cannot [41][42][43][44][45][46]. These specific characteristics of intellectually gifted children could make them more critical thinkers ...
Full-text available
The present study examined the performance on five phases of critical thinking in gifted and nongifted children in two settings: ethical and neutral. Ninety-one children, 32 gifted (8–10 years old), 32 normally developing children matched for chronological age (8–10 years old) and 27 normally developing children matched for mental age (12–13 years old) completed critical thinking tasks. The findings confirmed that intellectually gifted children had higher critical thinking capacity than typically developing children. The results reveal that the basic factor determining best performances in critical thinking is mental age and not chronological age. However, critical thinking ability was the same in ethical and neutral settings. Analysis of the phases of critical thinking show that the first and the third phase, clarification and evaluation, specifically differentiates gifted from nongifted children. These phases refer to the ability to understand the type of problem rapidly and to assess the credibility of statements and to assess the logical strength of the actual or intended inferential relationships among statements, descriptions, questions or other forms of representation.
... On the surface, this seemingly playful subject of creativity of young students, who represent future adult generations, refers to a less observable and more serious subject. Recent years have seen an increased awareness of the societal need to stimulate creative thought for sciences (Root-Bernstein & Root Bernstein 2004 for sustainable economies, but also for a sustainable earth (United Nations, 2018). In the USA, special mentoring programs like the Catalyst Program of the American Psychological Association (APA), support development of innovative thinking (Subotnik, Edmiston, Cook, Ross, 2010). ...
... (Marie Curie, Nobel prizes in physics, andchemistry (1903, 1911) in Our Precarious Habitat (1973) by Melvin A. Benarde,p. 5) Recent years see an increased awareness of the societal need to stimulate creative thought for sciences (Root-Bernstein 2004. Creative and innovative thinking are promoted worldwide, in the US (Subotnik, Olszewski-Kubilius, Worell & Lee, 2017), and for example at the European level through the strategic objectives of the 'ET 2020' framework for European cooperation in education and training (Council of the European Union, 2009). ...
... ng up several activities in a superficial or desultory way while polymathy entails profound learning in several fields. Another usage of the term polymathy is to form the construct called creative polymathy, which refers to the demonstration of creative abilities in many domains (see Kaufman, Beghetto, Baer, & Ivcevic, 2010;R. Root-Bernstein, 2003aR. Root-Bernstein & M. Root-Bernstein, 2004. Like the concept of polymathy itself, creative polymathy implies the dimension of depth. A creative product arises from the combination of stores of mathemata that are expected to possess at least some level of sophistication. ...
... s is expected to be in a privileged position to produce ideas that are original, useful and surprising. The relationship between polymathy and creativity is explored in multiple works by R. Root-Bernstein and colleagues (e.g., M. Root-Bernstein & R. Root-Bernstein, 2003;R. Root-Bernstein, 1997, 2003a, 2003bR. Root-Bernstein et al., 1993, 2008, 2013R. Root-Bernstein & M. Root-Bernstein, 2004, 2013. ...
Full-text available
This article aims to contribute to the study of polymathy by introducing novel perspectives on the phenomenon and by advancing a new model that systematizes the different variables involved in its development. The article is divided into four sections. The first section involves a reflection about the nature of polymathy; the term mathema is presented as the unit that underpins the development of polymathic knowledge, and the elements that constitute the fundamental qualities of polymathy are identified and discussed. In the second section, the novel conceptualization of polymathy as a life project is introduced; it builds upon previous psychoeconomic approaches to offer a new perspective on the phenomenon. In the third sec- tion, a developmental model of polymathy is suggested; it organizes the different constructs involved in the development of polymathy into a framework that can serve as basis for future studies. Finally, implications for research, practice and policy are discussed.
Creativity is recognised as a key facet of the suite of 21st century skills driving education worldwide. Understanding its existence outside of The Arts is vital for recognising young children’s creativity. However, what constitutes creativity and what it ‘looks like’ is not always clear. As a result, inconsistency and lack of efficacy when educators and parents attempt to encourage the development of young children’s creativity is possible. To investigate implicit theories of creativity relating to what creativity is and who is considered creative, parents and educators of four to eight-year-old children in four early learning contexts in Perth, Western Australia, were invited to complete a questionnaire. Findings suggest there may not be a strong tendency towards recognising creativity in The Arts but there may be an inclination to recognise eminent men’s creativity more than women’s. Additionally, there appears to be a lack of recognition of ‘daring’ as a creative behaviour.
The Cambridge Handbook of Creativity and Emotions provides a state-of-the-art review of research on the role of emotions in creativity. This volume presents the insights and perspectives of sixty creativity scholars from thirteen countries who span multiple disciplines, including developmental, social, and personality psychology; industrial and organizational psychology; neuroscience; education; art therapy, and sociology. It discusses affective processes – emotion states, traits, and emotion abilities – in relation to the creative process, person, and product, as well as two major contexts for expression of creativity: school, and work. It is a go-to source for scholars who need to enhance their understanding of a specific topic relating to creativity and emotion, and it provides students and researchers with a comprehensive introduction to creativity and emotion broadly.
Full-text available
Art&Recherche : la rencontre de deux univers Un après-midi de rencontres, d’échanges et de visite adressé aux Le 24 novembre 2022, le Confluent des Savoirs (UNamur) et le Pavillon (KIKK asbl) organisent une rencontre autour du thème Art&Sciences dans le cadre de la clôture de l’exposition Biotopia. Venez échanger avec nous sur les manières de faire dialoguer la recherche et l’art afin de faire de ce dernier un point d’entrée dans une problématique scientifique. Cette rencontre sera l’occasion d’appréhender les besoins de la recherche en « public outreach », d’échanger sur les pratiques de la vulgarisation scientifique et de discuter des possibilités et des limites de la communication par le médium artistique. Pour l’UNamur et le Pavillon, l’objectif est de mutualiser les ressources, de renforcer et améliorer les collaborations entre la recherche, la vulgarisation et la diffusion des savoirs. Raoul Sommeillier présentera l’organisation Ohme qui explore et exploite les liens entre art et sciences pour développer de nouvelles formes de création artistique, de médiation scientifique et d'innovation, à travers des pratiques collaboratives et transdisciplinaires. Ohme est co-auteur de l’installation Rotifer (a)live, qui se base sur le projet de recherche Rotifer In SpacE (ULB/UNamur), présentée dans l’exposition Biotopia au Pavillon. Il abordera également la notion de "préconceptions scientifiques” qui fut au centre de sa thèse de doctorat, ainsi que les axes de recherche de sa bourse Wernaers visant à étudier l’impact des activités utilisant et intégrant les arts dans l’apprentissage et la sensibilisation aux sciences. by Raoul SOMMEILLIER, Ingénieur en mécatronique, Docteur en sciences de l'éducation (ULB), co-fondateur de Ohme, lauréat 2021-23 de la Bourse de spécialisation en Communication et Vulgarisation scientifiques du Fonds Wernaers (FNRS).
Full-text available
A pesar de estas limitaciones, los investigadores están unidos en la necesidad de continuar examinando la creatividad. La interrelación entre las ciencias, las tecnologías, las artes y los oficios es permanente. Su separación es más una conveniencia que una necesidad. Forman un todo integrado. Cada una de ellas ha fructificado a partir de conceptos paralelos y de un impulso, común y activo, de creación. La belleza ha calado en el entramado de las teorías científicas y en el diseño tecnológico, y los artistas han incorporado las ideas científicas y los avances tecnológicos en sus procesos creativos. En los siguientes capítulos se plantea cómo la creatividad puede ser el punto de convergencia entre las ciencias y las artes. Esta cohesión hay que defenderla en forma de cultura transversal. La mayoría de los investigadores piensan que la creatividad científica se compone de los mismos procesos mentales que guían cualquier otra forma de creatividad, y lo que hace a las ciencias diferentes es el vasto conocimiento (teórico, técnico y experimental) que se requiere para crear una idea novedosa. Exploramos las similitudes entre los procesos creativos que utilizan científicos y artistas para llevar a cabo su trabajo de creación. El concepto de investigación es fundamental para entender la práctica artística. La intención básica del científico es encontrar regularidades y patrones en el mundo exterior para moderar el miedo que el caos y la impredecibilidad provocan al ser humano, a través de leyes y 14 Javier González García teorías que permiten predecir acontecimientos. Esto es semejante a lo que mueve al artista. Se abre un camino para observar cómo científicos sociales y cognitivos, filósofos y artistas, pueden ponerse de acuerdo en unos mismos objetos y líneas de estudio. En la complejidad del mundo, el arte se articula con la ciencia para ampliar la experiencia.
Full-text available
This is an account of a creative hero, whom we shall dearly miss; a scholar, activist, scientist, writer, and creative spirit, who heard the call and took the risks to offer a truth that was eclipsed for 100 years, i.e., “Darwin’s Lost Theory.” This heroism is part of true creativity, with courage to challenge the status quo. David Loye went further with social implications, and—along with colleagues including Riane Eisler—drew connections with the burgeoning interest in general systems theory, chaos theory, and complexity theory, as well as humanistic and positive psychology and creativity studies. As a social change agent, he helped found important organizations along the way. Today this new story is returning and expanding, in a hopefully continuing process of a valid, inclusive science
In those moments when focus on creative work overrides input from the outside world, we are in a creative trance. This psychologically significant altered state of consciousness is inherent in everyone. It can take the form of daydreams generating scientific or creative ideas, hyperfocus in sports, visualizations that impact entire civilizations, life-changing audience experiences, or meditations for self-transformation that may access states beyond trance, becoming gateways to transcendence. Artist and psychologist Tobi Zausner shows how creative trance not only operates in scientific inventions and works of art in all media, but is also important in creating and recreating the self. Drawing on insights from cognitive neuroscience, clinical psychology and post-materialist psychology, this book investigates the diversity of the creative trance ranging from non-industrial societies to digital urban life, and its presence in people from all backgrounds and abilities. Finally, Zausner investigates the future of trance in our rapidly changing world.
Chapter 9 summarizes why STEM and theatre arts faculties should be talking with each other and exploring ways in which interdisciplinary integrative educational experiences open doors to discovering how a more porous holistic curriculum presents collaborative opportunities for participating in cross-disciplinary creative thinking and research, identifying questions that lead to inventive, mindful, and innovative projects, and promoting empathetic awareness and scientific advancements for the betterment of society. Chapter 9 and the Appendix set the stage for advancing theatre–science collaborations in ways that promote a wider and grander view of what higher education can achieve when different disciplines come together to think about, discuss, and experience complex social problems through multiple lenses.
Full-text available
The sciences and arts were once, not so very long ago, considered to be very similar, certainly complementary, and sometimes even overlapping ways of understanding the world. No longer. Today we accept such generalizations as that the sciences are objective, analytical, and rational whereas the arts are subjective, emotional, and based on intuition. But I am a controversialist. The fact that arts and sciences are not widely perceived to be similar does not mean that they are not. Fashions often dictate perceptions of beauty and knowledge alike, and fashions are notoriously changeable. Thus, I am willing — indeed eager — to challenge the new fashion of separating sciences and arts into two, uncommunicating and even antagonistic camps. I believe that such a challenge is not only necessary if we are to develop a viable theory of thinking, but also healthy, for it should create controversy. Unlike some people, who believe that knowledge is best advanced by the slow accumulation of validated and undoubtable bits of information, I believe that we learn most by challenging conventional wisdom with the biggest and best arguments we can muster. This is my style. Sometimes it fails; sometimes it succeeds. But in either case, the process of trying to undermine dogma often reveals new aspects of knowledge, or forces it to be utilized in new and innovative ways that justify the rethinkings.
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies