Overexpression of Interleukin-1β in the Murine Pancreas Results in Chronic Pancreatitis

Division of Digestive and Liver Diseases, Columbia University Medical Center, New York 10032, USA.
Gastroenterology (Impact Factor: 16.72). 08/2008; 135(4):1277-87. DOI: 10.1053/j.gastro.2008.06.078
Source: PubMed


Chronic pancreatitis is a significant cause of morbidity and a known risk factor for pancreatic adenocarcinoma. Interleukin-1beta is a proinflammatory cytokine involved in pancreatic inflammation. We sought to determine whether targeted overexpression of interleukin-1beta in the pancreas could elicit localized inflammatory responses and chronic pancreatitis.
We created a transgenic mouse model (elastase sshIL-1beta) in which the rat elastase promoter drives the expression of human interleukin-1beta. Mice were followed up for up to 2 years. Pancreata of elastase sshIL-1beta mice were analyzed for chronic pancreatitis-associated histologic and molecular changes. To study the potential effect of p53 mutation in chronic pancreatitis, elastase sshIL-1beta mice were crossed with p53(R172H) mice.
Three transgenic lines were generated, and in each line the pancreas was atrophic and occasionally showed dilation of pancreatic and biliary ducts secondary to proximal fibrotic stenosis. Pancreatic histology showed typical features of chronic pancreatitis. There was evidence for increased acinar proliferation and apoptosis, along with prominent expression of tumor necrosis factor-alpha; chemokine (C-X-C motif) ligand 1; stromal cell-derived factor 1; transforming growth factor-beta1; matrix metallopeptidase 2, 7, and 9; inhibitor of metalloproteinase 1; and cyclooxygenase 2. The severity of the lesions correlated well with the level of human interleukin-1beta expression. Older mice displayed acinar-ductal metaplasia but did not develop mouse pancreatic intraepithelial neoplasia or tumors. Elastase sshIL-1beta*p53(R172H/+) mice had increased frequency of tubular complexes, some of which were acinar-ductal metaplasia.
Overexpression of interleukin-1beta in the murine pancreas induces chronic pancreatitis. Elastase sshIL-1beta mice consistently develop severe chronic pancreatitis and constitute a promising model for studying chronic pancreatitis and its relationship with pancreatic adenocarcinoma.

Download full-text


Available from: Govind Bhagat
  • Source
    • "IL-1β is a well described activator of pancreatic stellate cells [47]. Both TGF-β receptor knockout mice and IL-1β over-expression mice consistently develop severe chronic pancreatitis [51], [52]. Our results suggested that L-cysteine may inhibit pancreatic fibrosis through modulating inflammatory cytokine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.
    Full-text · Article · Feb 2012 · PLoS ONE
  • Source
    • "This cytokine has been shown to be involved in acute pancreatitis and pathogenesis of multisystem organ failure. Elastase sshIL-1β mice consistently developed severe chronic pancreatitis similar to human disease [147,148]. In this model propagation of more proinflammatory cytokines and recruitment of leucocytes triggered by IL-1β are considered to be the underlying causes for fibrosis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.
    Full-text · Article · Dec 2011 · Fibrogenesis & Tissue Repair
  • Source
    • "While we have focused our efforts on caerulein-induced pancreatitis, it would be interesting to investigate whether Stat3 signaling is also important in other models of pancreatic damage. These include hereditary pancreatitis caused by a missense mutation in the trypsin gene (PRSS1) (Archer et al., 2006) or cytokine-induced pancreatitis caused by ectopic expression of interleukin-1ββ (Marrache et al., 2008). Another potential avenue of investigation is whether Stat3 interacts with the primary cilia, which are the cellular appendages known to regulate Hedgehog signaling. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pancreatitis is a well-known risk factor for pancreatic ductal adenocarcinoma (PDA) development in humans, and inflammation promotes PDA initiation and progression in mouse models of the disease. However, the mechanistic link between inflammatory damage and PDA initiation is unclear. Using a Kras-driven mouse model of PDA, we establish that the inflammatory mediator Stat3 is a critical component of spontaneous and pancreatitis-accelerated PDA precursor formation and supports cell proliferation, metaplasia-associated inflammation, and MMP7 expression during neoplastic development. Furthermore, we show that Stat3 signaling enforces MMP7 expression in PDA cells and that MMP7 deletion limits tumor size and metastasis in mice. Finally, we demonstrate that serum MMP7 level in human patients with PDA correlated with metastatic disease and survival.
    Full-text · Article · Apr 2011 · Cancer cell
Show more