Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study

Dept. of Medicine, McMaster University, Hamilton, ON, Canada.
BMC Musculoskeletal Disorders (Impact Factor: 1.72). 09/2008; 9(1):119. DOI: 10.1186/1471-2474-9-119
Source: PubMed


The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging.
For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring <or=1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH).
Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m2. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) microL/mm2 and 1.45 (0.19) mm, respectively, and 1.77 (0.24) microL/mm2 and 1.71 (0.24) mm, respectively, in males.
These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA.

Download full-text


Available from: Jonathan D Adachi
  • Source
    • "While we only used 18 informative locations, our CDI detected a similar trend with 35% and 64% less medial tibiofemoral CDI among knees with JSN = 2 and 3 (Table 2) compared with knees without JSN. Furthermore, prior studies have found similar correlations to ours for medial JSW and medial tibiofemoral cartilage morphology (r = 0.46 to 0.71) [27,36,37] and changes in these measures (r = 0.21 to 0.48) [24,25]. Overall, we consistently found relationships between the CDI and the severity of radiographic OA except that knees with KL grade 2 had a greater baseline CDI and less apparent progression compared with those with KL grade 1 (i.e., suggesting less damage; Table 4). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cartilage morphometry based on magnetic resonance images (MRIs) is an emerging outcome measure for clinical trials among patients with knee osteoarthritis (KOA). However, current methods for cartilage morphometry take many hours per knee and require extensive training on the use of the associated software. In this study we tested the feasibility, reliability, and construct validity of a novel osteoarthritis cartilage damage quantification method (Cartilage Damage Index [CDI]) that utilizes informative locations on knee MRIs. Methods We selected 102 knee MRIs from the Osteoarthritis Initiative that represented a range of KOA structural severity (Kellgren Lawrence [KL] Grade 0 – 4). We tested the intra- and inter-tester reliability of the CDI and compared the CDI scores against different measures of severity (radiographic joint space narrowing [JSN] grade, KL score, joint space width [JSW]) and static knee alignment, both cross-sectionally and longitudinally. Results Determination of the CDI took on average14.4 minutes (s.d. 2.1) per knee pair (baseline and follow-up of one knee). Repeatability was good (intra- and inter-tester reliability: intraclass correlation coefficient >0.86). The mean CDI scores related to all four measures of osteoarthritis severity (JSN grade, KL score, JSW, and knee alignment; all p values < 0.05). Baseline JSN grade and knee alignment also predicted subsequent 24-month longitudinal change in the CDI (p trends <0.05). During 24 months, knees with worsening in JSN or KL grade (i.e. progressors) had greater change in CDI score. Conclusions The CDI is a novel knee cartilage quantification method that is rapid, reliable, and has construct validity for assessment of medial tibiofemoral osteoarthritis structural severity and its progression. It has the potential to addresses the barriers inherent to studies requiring assessment of cartilage damage on large numbers of knees, and as a biomarker for knee osteoarthritis progression.
    Full-text · Article · Aug 2014 · BMC Musculoskeletal Disorders
  • Source
    • "Up to now, reference values are not yet clinically applicable as inter-individual difference in cartilage thickness is too large [11,14]. Only a few studies addressed reference values [15] whereas most investigated the knee. An important problem provides the different modalities of MR Imaging, as slice thickness and used magnetic field strength varies with each study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis is an increasing burden in an ageing population. Sports, especially when leading to an overstress of joints, is under suspicion to provoke or at least accelerate the genesis of osteoarthritis. We present the radiologic findings of a 49-years old ultra-endurance athlete with 35 years of training and competing, whose joints of the lower limbs were examined using three different types of magnetic resonance imaging, including a microscopic magnetic resonance imaging coil. To date no case report exists where an ultra-endurance athlete was examined such detailed regarding overuse-injuries of his joints. A 49 years old, white, male ultra-endurance athlete reporting no pain during training and racing and with no significant injuries of the lower limbs in his medical history was investigated regarding signs of chronic damage or overuse injuries of the joints of his lower limbs. Despite the age of nearly 50 years and a training history of over 35 years, the athlete showed no signs of chronic damage or overuse injuries in the joints of his lower limbs. This leads to the conclusion that extensive sports and training does not compulsory lead to damages of the musculoskeletal system. This is a very important finding for all endurance-athletes as well as for their physicians.
    Full-text · Article · Dec 2013 · BMC Musculoskeletal Disorders
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic Resonance Imaging (MRI) offers unique opportunities for direct visualization and quantification of cartilage morphology. MRI enables three-dimensional (3D) acquisitions with contiguous slices, an essential feature for 3D quantification, resulting in improved accuracy and precision of morphological metrics. MRI has unique tomographic capabilities, excellent soft tissue contrast, high signal to noise ratio (SNR), and high-spatial resolution making it the imaging modality of choice to quantify cartilage morphology in vivo. However, the anatomic location of articular cartilage, small size, special geometry, and short transverse relaxation time (T 2) represent also a challenge for MRI.
    No preview · Article ·
Show more