First Evidence of Genetic Association Between AKT2 and Polycystic Ovary Syndrome

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
Diabetes care (Impact Factor: 8.42). 10/2008; 31(12):2284-7. DOI: 10.2337/dc08-0532
Source: PubMed


Insulin resistance has been reported in up to 70% of women with polycystic ovary syndrome (PCOS). Physiologic and genetic data currently implicate post-insulin receptor signaling defects in substrates such as glycogen synthase kinase 3beta (GSK3beta). The AKT2 gene was chosen as a candidate for PCOS because its product affects glucose metabolism and mitogenic signaling, interacts with GSK3beta, and mediates cell survival in the ovary.
Subjects were recruited from the reproductive endocrinology clinic at the University of Alabama at Birmingham, and control subjects were recruited from the surrounding community; 287 white women with PCOS and 187 white control subjects were genotyped for four single nucleotide polymorphisms (SNPs) in AKT2. Genotyping took place at Cedars-Sinai Medical Center in Los Angeles. SNPs and haplotypes were tested for association with PCOS risk and phenotypic markers of PCOS.
Minor allele carriers of SNPs rs3730051 and rs8100018 had increased odds of PCOS (odds ratio [OR] 2.2, P = 0.004, and 2.4, P = 0.001, respectively). The haplotype T-G-C-T was significantly associated with PCOS (OR 2.0, P = 0.01). Carriers of the risk haplotypes for both AKT2 and GSK3B had a further increased odds of PCOS (OR 3.1, P = 0.005).
These data suggest that polymorphisms in two components of the insulin signaling pathway, AKT2 and GSK3B, are associated with PCOS. The presence of multiple lesions in a single pathway may confer increased risk.

Download full-text


Available from: Michelle R Jones
  • Source
    • "In particular, several further observations point to an involvement of insulin receptor (InsR) signaling in PCOS. Defects in InsR phosphorylation (Dunaif et al., 1995) and further genetic lesions in this pathway, affecting InsR, PKBβ (also known as Akt2) and downstream glycogen synthase kinase 3β (GSK3β), are found in individuals with PCOS (George et al., 2004; Tan et al., 2007; Goodarzi et al., 2008; Mukherjee et al., 2009). Insulin can act as a 'co-gonadotrophin' and exogenous administration of LH in rodent models of PCOS can exacerbate PCOS cyst formation (Poretsky et al., 1992). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cysts affect women of all ages and decrease fertility. In particular, polycystic ovarian syndrome (PCOS), in which multiple follicular cysts develop, affects 5-10% of women of reproductive age and can result in infertility. Current non-invasive treatments for PCOS can resolve cysts and restore fertility, but unresponsive patients must undergo severe ovarian wedge resection and resort to in vitro fertilization. PCOS is related to the deregulation of leutinizing hormone (LH) signaling at various levels of the hypothalamic-pituitary-ovarian axis and resultant hyperproduction of androgens. Because insulin resistance and compensatory hyperinsulinemia are observed in 50-70% of individuals with PCOS, deregulated insulin signaling in the ovary is considered an important factor in the disease. Here we report that aged mice specifically lacking the PKBβ (also known as Akt2) isoform that is crucial for insulin signaling develop increased testosterone levels and ovarian cysts, both of which are also observed in insulin-resistant PCOS patients. Young PKBβ knockout mice were used to model PCOS by treatment with LH and exhibited a cyst area that was threefold greater than in controls, but without hyperinsulinemia. Thus, loss of PKBβ might predispose mice to ovarian cysts independently of hyperactive insulin signaling. Targeted therapeutic augmentation of specific PKBβ signaling could therefore provide a new avenue for the treatment and management of ovarian cysts.
    Full-text · Article · Feb 2012 · Disease Models and Mechanisms
  • Source
    • "In the ovary, AKT activation has been found to play a role in insulin induction of 5α-reductase gene expression (19) and 17α-hydroxylase activity (20), leading to an increase in ovarian androgen biosynthesis. Interestingly, polymorphisms in the Akt2 gene have been found to be associated with PCOS in women (21). Insulin and IGF-I–induced progesterone production via MAPK pathways in the human ovary have also been described (22), with insulin stimulating the p38 family of MAPKs to induce this effect. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reproductive dysfunction is associated with obesity. We previously showed that female mice with diet-induced obesity (DIO) exhibit infertility and thus serve as a model of human polycystic ovary syndrome (PCOS). We postulated that differential insulin signaling of tissues leads to reproductive dysfunction; therefore, a comparison of insulin signaling in reproductive tissues and energy storage tissues was performed. Pituitary-specific insulin receptor knockout mice were used as controls. High-fat diet-induced stress, which leads to insulin resistance, was also investigated by assaying macrophage infiltration and phosphorylated Jun NH(2)-terminal kinase (pJNK) signaling. In lean mice, reproductive tissues exhibited reduced sensitivity to insulin compared with peripheral metabolic tissues. However, in obese mice, where metabolic tissues exhibited insulin resistance, the pituitary and ovary maintained insulin sensitivity. Pituitaries responded to insulin through insulin receptor substrate (IRS)2 but not IRS1, whereas in the ovary, both IRS1 and IRS2 were activated by insulin. Macrophage infiltration and pJNK signaling were not increased in the pituitary or ovary of lean mice relative to DIO mice. The lack of inflammation and cytokine signaling in the pituitary and ovary in DIO mice compared with lean mice may be one of the reasons that these tissues remained insulin sensitive. Retained sensitivity of the pituitary and ovary to insulin may contribute to the pathophysiology of PCOS.
    Full-text · Article · Nov 2011 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase 3 (GSK3) regulates cellular metabolism and cell cycle via different signalling pathways. In response to insulin and growth factors GSK3 is serine-phosphorylated and inactivated. We analysed GSK3B expression and activation in bovine cumulus cells (CC) and oocytes at different meiotic stages in vitro in parallel with MAP kinases ERK (MAPK3/MAPK1) and p38 (MAPK14). GSK3B localised to cytoplasm in granulosa cells and in oocytes throughout folliculogenesis. In mature metaphase-II (MII) oocytes, GSK3B was concentrated to the region of midzone between the oocyte and the first polar body, as well as active phospho-Thr Aurora A kinase (AURKA). During in vitro maturation (IVM), in oocytes, phospho-Ser(9)-GSK3B level increased as well as phospho-MAPK3/MAPK1, while phospho-MAPK14 decreased. In CC, phospho-MAPK14 increased upon germinal vesicle breakdown (GVBD)/metaphase-I (MI) and then decreased during transition to MII. Administration of inhibitors of GSK3 activity (lithium chloride or 2'Z,3'E -6-bromoindirubin-3'-oxime) rapidly increased phospho-Ser(9)-GSK3B, and led to transient decrease of phospho-MAPK3/MAPK1 and to durable enhancing of phospho-MAPK14 in granulosa primary cell culture. GSK3 inhibitors during IVM diminished cumulus expansion and delayed meiotic progression. In cumulus, phospho-MAPK14 level was significantly higher in the presence of inhibitors, comparing with control, through the time of MI/MII transition. In oocytes, phospho-GSK3B was increased and phospho-MAPK3/MAPK1 was decreased before GVBD and oocytes were mainly arrested at MI. Therefore, GSK3B might regulate oocyte meiosis, notably MI/MII transition being the part of MAPK3/1 and MAPK14 pathways in oocytes and CC. GSK3B might be also involved in the local activation of AURKA that controls this transition.
    Full-text · Article · Jun 2009 · Reproduction
Show more