Histotype-specific copy-number alterations in ovarian cancer

BMC Medical Genomics (Impact Factor: 2.87). 10/2012; 5(1):47. DOI: 10.1186/1755-8794-5-47
Source: PubMed


Epithelial ovarian cancer is characterized by multiple genomic alterations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and can be broadly categorized into 4 main histotypes of clear cell, endometrioid, mucinous, and serous. To date, histotype-specific copy number alterations have been difficult to elucidate. The difficulty lies in having sufficient sample size in each histotype for statistical analyses.

To dissect the heterogeneity of ovarian cancer and identify histotype-specific alterations, we used an in silico hypothesis-driven approach on multiple datasets of epithelial ovarian cancer.

In concordance with previous studies on global copy number alterations landscape, the study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here significant histotype-specific copy number alterations in ovarian cancer and showed that there is genomic diversity amongst the histotypes. 76 cancer genes were found to be significantly altered with several as potential copy number drivers, including ERBB2 in mucinous, and TPM3 in endometrioid histotypes. ERBB2 was found to have preferential alterations, where it was amplified in mucinous (28.6%) but deleted in serous tumors (15.1%). Validation of ERBB2 expression showed significant correlation with microarray data (p=0.007). There also appeared to be reciprocal relationship between KRAS mutation and copy number alterations. In mucinous tumors where KRAS mutation is common, the gene was not significantly altered. However, KRAS was significantly amplified in serous tumors where mutations are rare in high grade tumors.

The study demonstrates that the copy number landscape is specific to the histotypes and identification of these alterations can pave the way for targeted drug therapy specific to the histotypes.

Download full-text


Available from: Ruby Yun-Ju Huang
    • "Specifically , these tumors are classified based upon mutation of p53, BRCA1/2 mutation, somatic loss, or methylation, and a variety of protein markers including PAX8 and WT1. In addition, copy number variation is a hallmark of HGSOC and less commonly found in endometrioid, clear cell, and mucinous histotypes [12]. Recent genetic signatures from primary human tumors further divided HGSOC into four molecular groups, namely immunoreactive, proliferative, differentiated, and mesenchymal [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119, UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Jun 2015 · Gynecologic Oncology
  • Source
    • "These cancers do not respond well to chemotherapy and are associated with poor prognosis [4,5]. Our previous study looking at copy number alterations across four main histotypes of EOC revealed mEOC harbored highest prevalence of HER2 amplification (28.6%) in EOC and is a potential driver gene for copy number alterations [6]. Several studies have also shown high prevalence of HER2 in mEOC using immunohistochemistry (IHC) and in-situ hybridization assays. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dual in-situ hybridization (DISH) assay is a relatively new assay for evaluating Human Epidermal Growth Factor Receptor 2 (HER2) genomic amplification. Optimization protocol for the assay is not yet well established, especially for archival tissues. Although there is a recommended nominal protocol, it is not suited for formalin-fixed and paraffin-embedded (FFPE) samples that were archived for long periods. In a study on local population of mucinous epithelial ovarian cancer, we developed a series of optimization protocols based on the age of samples to improve success of the DISH assay. A decision workflow was generated to facilitate individualization of further optimization protocols. The optimizations were evaluated on 92 whole tissue sections of FFPE mucinous ovarian tumors dating from 1990 to 2011. Overall, 79 samples were successfully assayed for DISH using the series of optimization protocols. We found samples older than 1 year required further optimization beyond the nominal protocol recommended. Thirteen samples were not further assayed after first DISH assay due to inadequately preserved nuclear morphology with no ISH signals throughout the tissue section. The study revealed age of samples and storage conditions were major factors in successful DISH assays. Samples that were ten years or less in age, and archived in-house were successfully optimized, whereas older samples, which were also archived off-site, have a higher frequency of unsuccessful optimizations. The study provides practical and important guidelines for the new DISH assay which can facilitate successful HER2 evaluation in ovarian cancers and possibly other cancers as well.
    Full-text · Article · Dec 2013 · BMC Research Notes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mucinous epithelial ovarian cancer has a poor prognosis in the advanced stages and responds poorly to conventional chemotherapy. We aim to elucidate the clinicopathological factors and incidence of HER2 expression of this cancer in a large Asian retrospective cohort from Singapore. Of a total of 133 cases, the median age at diagnosis was 48.3 years (range, 15.8-89.0 years), comparatively younger than western cohorts. Most were Chinese (71%), followed by Malays (16%), others (9.0%), and Indians (5%). 24% were noted to have a significant family history of malignancy of which breast and gastrointestinal cancers the most prominent. Majority of the patients (80%) had stage I disease at diagnosis. Information on HER2 status was available in 113 cases (85%). Of these, 31 cases (27.4%) were HER2+, higher than 18.8% reported in western population. HER2 positivity appeared to be lower among Chinese and higher among Malays patients (p = 0.052). With the current standard of care, there was no discernible impact of HER2 status on overall survival. (HR = 1.79; 95% CI, 0.66-4.85; p = 0.249). On the other hand, positive family history of cancer, presence of lymphovascular invasion, and ovarian surface involvements were significantly associated with inferior overall survival on univariate and continued to be statistically significant after adjustment for stage. While these clinical factors identify high risk patients, it is promising that the finding of a high incidence of HER2 in our Asian population may allow development of a HER2 targeted therapy to improve the management of mucinous ovarian cancers.
    Preview · Article · Apr 2013 · PLoS ONE
Show more