ArticlePDF Available

Pruning the polyphyletic genus Polyalthia (Annonaceae) and resurrecting the genus Monoon

Article

Pruning the polyphyletic genus Polyalthia (Annonaceae) and resurrecting the genus Monoon

Abstract and Figures

The highly polyphyletic status of the species-rich genus Polyalthia (Annonaceae) remains one of the most significant impediments to revisionary and floristic taxonomic research in the family. Although Polyalthia has recently been reduced in taxonomic scope, the remaining species in the genus still form a phylogenetically disparate and morphologically heterogeneous assemblage. We use maximum parsimony, maximum likelihood and Bayesian phylogenetic reconstructions based on chloroplast DNA sequence data (matK, rbcL, trnL-F) to show that the remaining Polyalthia species segregate into three clades: a clade sister to Miliusa; a clade that also includes all Enicosanthum and Woodiellantha species sampled, sister to Neo-uvaria; and a clade that also includes all Haplostichanthus species sampled, inferred (based on previous research) to be sister to Popowia. Diagnostic morphological and anatomical characters are evaluated for the latter two clades, and diagnostic leaf and seed characters identified. Based on these results, the generic name Monoon is resurrected for the clade that includes Enicosanthum and Woodiellantha, following the transfer of 37 species from Polyalthia s.l., 18 species from Enicosanthum and the single Woodiellantha species. The generic name Haplostichanthus is furthermore synonymised with Polyalthia s.str., necessitating nine nomenclatural changes, including six new combinations and three replacement names.
Content may be subject to copyright.
1021
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1021Version of Record (identical to print version).
INTRODUCTION
The higher-level infrafamilial classification of the early-
divergent angiosperm family Annonaceae has undergone major
changes in recent years consonant with attempts to align taxon
circumscriptions with molecular phylogenetic data. A new sub-
familial and tribal classification has recently been published
(Chatrou & al., 2012), with four subfamilies: Anaxagoreoideae
(26 spp.), Ambavioideae (57 spp.), Annonoideae (1631 spp.),
and Malmeoideae (726 spp.; species diversity estimates by
Couvreur & al., 2011). Although there have been considerable
advances in our understanding of Annonaceae phylogeny, re-
lationships within subfam. Malmeoideae remain problematic,
with many polytomies and inadequately supported clades.
Chatrou & al. (2012) recognise seven tribes within this sub-
family, most of which are relatively small; tribe Miliuseae is a
significant exception, however, with 25 genera and ca. 510 spe-
cies. The Miliuseae is particularly problematic: although it is
consistently retrieved as a well supported clade in molecular
phylogenetic analyses, with ca. 20 moderately to well supported
subclades, the backbone of the phylogeny remains largely un-
resolved (Mols & al., 2004b; Couvreur & al., 2011; Saunders
& al., 2011; Xue & al., 2011; Chatrou & al., 2012; Thomas
& al., 2012).
Polyalthia Blume is the largest genus within tribe Mili-
useae, with ca. 155 species currently accepted (Rainer
& Chatrou, 2006). The genus has long been recognised as a
morphologically heterogeneous assemblage lacking obvious
synapomorphies (Johnson & Murray, 1999). The polyphyletic
or paraphyletic status of the genus was suggested by many
taxonomists (e.g., Rogstad & Le Thomas, 1989; Van Setten
& Koek-Noorman, 1992; Doyle & Le Thomas, 1994, 1996;
Doyle & al., 2000), and was subsequently confirmed by molec-
ular phylogenetic analyses which demonstrated that Poly althia
species were dispersed across at least six different lineages
(Mols & al., 2004b; Saunders & al., 2011; Xue & al., 2011).
The earliest attempts to disentangle Polyalthia were based on
morphological criteria, and included the transfer of species to
Trivalvaria (Miq.) Miq. (Sinclair, 1951), Enicosanthum Becc.
(Airy-Shaw, 1939; Sinclair, 1955), Disepalum Ho ok. f. (Sincla i r,
1955), Greenwayodendron Verdc. (Verdcourt, 1969), Enico-
santhellum Bân (Bân, 1975; species subsequently reclassified
in Disepalum: Johnson, 1989), and Haplostichanthus F. Muel l.
(Van Heusden, 1994). Progress with segregating the disparate
elements in Polyalthia was greatly accelerated by the applica-
tion of molecular phylogenetic methods, with the removal of
the Southeast Asian Polyalthia hypoleuca complex” (sensu
Rogstad, 1989, 1990, 1994; Rogstad & Le Thomas, 1989) as
Pruning the polyphyletic genus Polyalthia (Annonaceae) and
resurrecting the genus Monoon
Bine Xue,1 Yvonne C.F. Su,1,2 Daniel C. Thomas1,3 & Richard M.K. Saunders1
1 School of Biological Sciences, The Universit y of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
2 Current address: Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857
3 Current address: Netherlands Centre for Biodiversity Naturalis, section NHN, Leiden University, P.O. Box 9514,
2300 RA Leiden, the Netherlands
Author for correspondence: Richard M.K. Saunders, saunders@hku.hk
Abstract
The highly polyphyletic stat us of the species-rich genus Polyalthia (Annonaceae) remains one of the most signif icant
impediments to revisionar y and f loristic taxonomic research in the family. Although Polyalthia has recently been reduced in
taxonomic scope, the remaining species in the genus still form a phylogenetically disparate and morphologically heterogeneous
assemblage. We use maximum parsimony, maximum likelihood and Bayesian phylogenetic reconstructions based on chloroplast
DNA sequence data (matK, rbcL, trnL-F) to show that the remaining Polyalthia species segregate into three clades: a clade
sister to Miliusa; a clade that also includes all Enicosanthum and Woodiellantha species sampled, sister to Neo-uvaria; and a
clade that also includes all Haplostichanthus species sampled, inferred (based on previous research) to be sister to Popowia.
Dia gn ostic mor pholog ical and anatom ical ch ar ac te rs are evalua te d for the latter two clades, and diag nostic le af and seed cha r-
acters identified. Based on these results, the generic name Monoon is resurrected for the clade that includes Enicosanthum
and Woodiellantha, following the transfer of 37 species from Polyalthia s.l., 18 species from Enicosanthum and the single
Woodiellantha species. The generic name Haplostichanthus is furthermore synonymised with Polyalthia s.str., necessitating
nine nomenclatural changes, including six new combinations and three replacement names.
Keywords
Annonaceae; Enicosanthum; Haplostichanthus; molecular phylogenetics; Monoon; nomenclature; Polyalthia;
taxonomy; Woodiellantha
Supplementary Material
The alignment is available in the Supplementary Data section of the online version of this article
(http://www.ingentaconnect.com/content/iapt/tax).
1022
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1022 Version of Record (identical to print version).
the new genus Maasia Mols & al. (Mols & al., 2008), and the
recent transfer of species to Fenerivia Diels (Saunders & al.,
2011) and Marsypopetalum Scheff. (Xue & al., 2011).
Molecular phylogenetic analyses indicate that Polyalthia
remains polyphyletic despite the removal of many disparate el-
ements, with species associated with three main clades: (1) an
African-Asian clade, sister to Miliusa Lesch. ex A. DC.; (2) an
Asian clade, sister to Neo-uvaria Ai r y Shaw, which also includ es
Enicosanthum; and (3) the “true” Polyalthia clade, inclusive of
the type species P. subcordata (Blume) Blume as well as Hap-
lostichanthus (Saunders & al., 2011; Xue & al., 2011). The first
of these clades is the focus of a parallel study by T. Chaowasku
(pers. comm.) and will not be discussed further here. The pres-
ent research accordingly focuses on the remaining two clades.
The clade that includes Enicosanthum is nomenclaturally
complex as it also includes species that were originally described
in Monoon Miq. (Miquel, 1865). Although Miquel’s circum-
scription of Monoon was heterogeneous, Bentham & Hooker
(1867) and Hooker & Thomson (1872) recognised Monoon as
a section within Polyalthia, restricting the scope of the taxon
to those species with a solitary, basal ovule. Mols & al. (2008)
noted that the name Monoon had never been typified, and rec-
ommended that a type be selected in order to maintain the use of
the name for species with a single, basal ovule, thereby enabling
continued usage in accordance with that of Hooker & Thomson
(1872). Saunders & Xue (2011) subsequently used the name
Monoon lateriflorum (Blume) Miq. to typify the generic name.
A nomenclatural consequence of this is that the names Mo-
noon and Enicosanthum became taxonomic synonyms, with
the former having nomenclatural priority. In order to prevent
the overturning of the widely used and long-established name
Enicosanthum, Saunders & Xue (2011) proposed conservation
of this name over that of Monoon, although this proposal has
not been accepted (W. Applequist, pers. comm.).
The polyphyletic status of Polyalthia, one of the largest gen-
era in Annonaceae, is arguably the most significant impediment
to revisionary taxonomic research in the family. The objective of
th is research is to use chloro plast DNA sequ enc e data to ident i f y
well-supported clades amongst the Polyalthia segre gat es, and to
evaluate the diagnostic morphological characters of these clades.
A large number of new nomenclatural combinations resulting
from these changes in generic circumscription are validated here,
consonant with the recognition of monophyletic genera.
MATERIALS AND METHODS
Taxon sampling. —
The data matrix comprised a total
of 126 species of Annonaceae representing all major clades
in the family, including 40 species of Polyalthia, six species
of Enicos anthum (ca. 33% of the genus), six species of Haplo-
stichanthus (ca. 55% of the genus), the only currently recog-
nised species of Woodiell antha Rausc her t , and 35 sp e cies from
19 other representative genera in tribe Miliuseae. The sam-
ples, localities and GenBank accession numbers are listed in
Appendix 1. Chatrou & al. made rbcL and trnL-F sequenc es of
the collection Lugas 311 (K) available in Gen Bank (ac cessions
AY841665 and AY841743) under the name “Woodiellantha sp.”
This data was subsequently used in phylogenetic analyses by
Saunders & al. (2011) and Chatrou & al. (2012), in which the
specimen was shown to be associated with Orophea Blume; th e
specimen is likely to be misidentified (J.B. Mols, pers. comm.),
however, and for this reason is excluded from the present study.
DNA extraction, amplification and sequencing. —
Ge-
nomic DNA was extracted from silica-dried or herbarium
material using the DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol or using a
modified cetyl trimethyl ammonium bromide (CTAB) method
(D oyle & Doyle, 1987; Erkens & al ., 2008; Su & al., 2008) with
DNA purified using the Wizard PCR Preps DNA Purification
System (Promega, Madison, Wisconsin, U.S.A.).
Three chloroplast DNA regions, matK, rbcL and trnL-F,
were sequenced using the following primers for amplifica-
tion: (1) matK gene: primers matK-13F/515R, matK-424F/788R
and matK-449F/824R (Su & al., 2008); (2) rbcL gene: primers
rbcL-7F/429R, rbcL-127F/734R, rbcL-656F/1100R and rbcL-
984F/1381R (Su & al., 2008); and (3) trnL-F (trnL intron and
trnL-trnF intergenic spacer): primers trnLF-12F/433R, trn LF-
147F/580R, trnLF-413F/774R and trnLF-597F/960R (Su & al.,
2008) or trnLF-12F/556R and trnLF-500F/960R (Surveswaran
& al., 2010).
For amplification, each 25 μl PCR contained 13.05 μl of
ddH
2
O, 5 μl of 5× reaction buffer, 3 μl of MgCl
2
(25 m M),
0.5 μl dNTPs (10 mM each), 0.75 μl of each forward and re-
verse primer (10 μM), 1.25 μl bovine serum albumin (BSA,
10 mg/ml), 0.2 μl of Flexitaq DNA polymerase (Promega) and
0.5 μl of DNA template. Reactions were performed using the
following cycling conditions: template denaturation at 94°C
for 3 min, followed by 35 cycles of denaturation at 94°C for
1 min; annealing at 49°C (trnL-F) or 52°C–55°C (matK, rbcL)
for 1 min; and extension at 72°C for 2 min; with an additional
final extension at 74°C for 7 min.
Amplification products were separated electrophoretically
in 1% (wt/vol) agarose TBE gels stained with SYBR Safe gel
stain (Invitrogen, Carlsbad, California, U.S.A.) or ethidium
bromide and visualized under UV light. PCR product puri-
fication, amplification using the BigDye Terminator Cycle
Sequencing Kit (Applied Biosystems, Foster City, California,
U.S.A.), and sequencing run on an AB 3730 DNA Analyser
(Applied Biosystems) by BGI (Hong Kong, P.R. China).
Phylogenetic analyses. —
Sequences were edited and
assembled in SeqMan Pro using DNAStar Lasergene v.8.0
(DNAStar, Madison, Wisconsin, U.SA.) and aligned using
BioEdit v.7.0.9 (Hall, 1999) and Se-Al v.2.0a11 (Rambaut,
1996), or alternatively assembled and edited using Geneious
v.5.4.3 (Drummond & al., 2010) and then pre-aligned using the
MAFFT (Katoh & al., 2002) plugin in Geneious using the auto-
matic algorithm selection and default settings, and subsequently
manually checked and optimized. Two mononucleotide repeats
in the trnL-F region were excluded from the analyses because
of difficult homology assessment: up to 17 Ts in the trnL intron
and up to eight As in the trnL-trnF intergenic spacer.
Maximum parsimony (MP) analyses of the three com-
bined regions were conducted using PAUP* v.4.0b10 (Swofford,
1023
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1023Version of Record (identical to print version).
2003). All characters were weighted equally and gaps treated
as missing data. The most parsimonious trees were obtained
with heuristic searches of 1000 replicates of random stepwise
sequence addition, tree bisection-reconnection (TBR) branch
swapping with no limit to the number of trees saved. Bootstrap
support (BS) was calculated with 10,000 simple stepwise ad-
dition replicates with TBR branch swapping and no more than
10 trees saved per replicate following Müller (2005).
Maximum likelihood (ML) and Bayesian phylogenetic re-
constructions were performed using the NSF Extreme Science
& Engineering Discovery Environment (XSEDE) applications
of MrBayes v.3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist
& Huelsenbeck, 2003) and RAxML v.7.2.8 (Stamatakis, 2006)
prov ide d by th e CIPR ES Scie nce Gateway (M iller & al., 2010).
For the ML analyses the dataset was divided into three
partitions based on DNA region identity. Fifty inferences were
run under the general time-reversible nucleotide substitution
model with among-site rate variation modelled with a gamma
distribution (GTR + 
Γ
). Subsequently, 1000 non-parametric
bootstraps were performed under the partitioned data mode.
For the Bayesian analyses two partitioning schemes were
used: three partitions based on DNA region identity or the
three cpDNA regions were concatenated and analysed without
partitioning. Best-fitting nucleotide substitution models for the
concatenated matrix and each nucleotide sequence partition
were selected by MrModelTest v.2.3 (Nylander, 2004) using
the Akaike information criterion. The general time-reversible
nucleotide substitution model with among-site rate variation
modelled with a gamma distribution (GTR + 
Γ
) was selected for
the matK and trnL-F partitions, and GTR + 
Γ
plus a prop ortion
of invariable sites (GTR + 
Γ + I
) was selected for rbcL and the
non-partitioned dataset. For phylogenetic reconstructions us-
ing both the partitioned and the non-partitioned datasets, two
independent Metropolis-coupled Markov chain Monte Carlo
(MCMC) analyses were r un. Each search used three incremen-
tally heated and one cold Markov chain, and was run for 10 mil-
lion generations and sampled every 1000th generation. The
temperature parameter was set to 0.08. The mean branch length
prior was set from the default mean (0.1) to 0.01 (brlenspr = unc
onstrained:exponential(100.0)) to reduce the likelihood of sto-
chastic entrapment in local tree length optima (Brown & al.,
2010; Marshall, 2010). For the partitioned dataset, the param-
eters for character state frequencies, substitution rates of the
nucleotide substitution models, and rate variation among sites
were unlinked across partitions. Convergence was assessed
by using the standard deviation of split frequencies as conver-
gence index with values < 0.01 inter preted as indicating good
convergence. Tracer v.1.5 (Rambaut & Drummond, 2009) was
used to determine whether the parameter values were drawn
from a stationary, unimodal distribution, and whether adequate
effective sample sizes for each parameter (ESS > 200) were
reached. Stationarity of posterior probabilities of splits within
runs, and convergence of posterior probabilities of splits be-
twee n dif ferent r uns were vis ual ly che cked using the Cumula-
tive and Compare functions in AWTY (Nylander & al., 2008).
The initial 25% of samples of each MCMC run were discarded
as bur n-i n, and the re m aini ng tree s wer e summa r i zed as a 50%
majority-rule consensus tree with nodal support summarized
as posterior probabilities.
Overall performance of analyses of non-partitioned and
partitioned nucleotide datasets was assessed with Bayes factor
comparison implemented in Tracer v.1.5, which is based on
marginal likelihood ratio estimates using the method by Newton
& Raftery (1994) with modifications by Suchard & al. (2001).
The criterion of 2ln Bayes factor of ≥ 10 was used as a bench-
mark, indicating very strong evidence in favor of one strategy
over another (Kass & Raftery, 1995; Nylander & al., 2004).
In this study, bootstrap values in the range 65%–84%
were considered as indicative of moderate support, and 85%–
100% as strong support. For BI, branches with PP values
≥ 0.95 were considered as well supported.
Anatomical study.
Leaf midrib anatomy was examined
for most available species. Leaves from herbarium specimens
or sil ica gel -drie d sample s were soa ked in wat e r overnight , and
hand sectioned at the base of the midrib. Samples were stained
with 0.05% aqueous Toluidine Blue O (Parker & al., 1982).
Selected samples were embedded in paraffin wax, sectioned
at 20 µm using a rotary microtome, and stained with Safra-
nin O and Fast Green following standard protocol (O’Brien
& McCully, 1981; Ruzin, 1999).
RESULTS
The concatenated alignment of the 126-taxon dataset con-
sisted of 3240 aligned positions (trnL-F: 1108 bp; matK: 789 bp;
rbcL: 1343 bp) before th e rem ov al of 32 bp of ambig u ous regions
in trnL-F. Of the total 3208 characters used, 1046 bp (32.6%)
were variable, and 541 bp (16.9%) were parsimony-informative.
Parsimony analysis of the combined regions yielded 120,939 most
pa rsi moniou s trees of 1994 step s (con sis tency index, CI = 0.627;
reten tio n index, RI = 0.745; resc ale d rete ntion index , RC = 0.467 ).
Partitioning considerably improved mean −lnL values in
the Bayesian analyses, with non-partitioned mean −lnL = 180 0,
compared with 1777 with three partitions. Bayes factor com-
parison also indicated that the partitioned analyses provided
decisively better explanations than analyses based on the non-
partitioned model: 2lnB (three partitions over non-partitioned)
= 423, significantly above the threshold value of 10. The sub-
sequent presentation of the results of the Bayesian analyses is
therefore restricted to the 50% majority-rule consensus tree
derived from the analyses using three partitions.
The MP, ML and Bayesian analyses resulted in similar
topologies. The 50% majority-rule consensus tree resulting
from the Bayesian analyses under the three-partitioned model
is shown in Fig. 1. Four main clades are retrieved in the family,
consistent with subfamilies Anaxagoreoideae, Ambavioideae,
Annonoideae and Malmeoideae (sensu Chatrou & al., 2012).
Subfamily Malmeoideae includes a major clade which is ba-
sally unresolved (Fig. 2), representing tribe Miliuseae (sensu
Chatrou & al., 2012).
Polyalthia species are represented in three moderately
to strongly supported clades within tribe Miliuseae, labelled
clad es I–II I in Fig. 2. Cla de I (PP = 1; MP BS = 100%; ML BS =
1024
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1024 Version of Record (identical to print version).
100 %) includ es four Polyalthia species , wit h a moderat ely sup -
ported sister-group relationship with Miliusa (PP = 1; MP BS =
65%; ML BS = 68%). Clade II (PP = 1; MP BS = 88%; ML BS
= 96%) consists of a combination of Polyalthia, Enicosanthum
and Woodiellantha species, and is sister to a small Neo-uvaria
clade, with moderate to strong support for the combined clade
(PP = 1; MP BS = 75%; ML BS = 86%). Clade III (PP = 1; MP
BS = 69%; ML BS = 77%) represents “true” Polyalthia as it
includes the ty p e species (P. subcordata), but also includes six
Haplostichanthus species, including the type species of that
genus, H. johnsonii F. Muell. The sister relationship of clade
III was not recovered in this analysis, but it has previously been
shown to be sister to Popowia Endl. in phylogenies based on
more DNA regions (Thomas & al., 2012).
DISCUSSION
The phylogenetic analyses presented here (Figs. 1 & 2)
confirm once again the polyphyletic status of Polyalthia, al-
though with reduced taxonomic scope consonant with nomen-
clatural changes resulting from previous phylogenetic studies
of the group. Species currently recognised in Polyalthia are
represented in three clades (labelled I–III in Fig. 2), although
unequivocal resolution of the higher-level relationships be-
tween these clades cannot be achieved with the available data.
The principle of generic monophyly is applied in this study,
with the recommendation that the constituent species in each
of clades I–III should be treated as respectively congeneric.
Clade I is to be recognised as a new genus in a parallel study
(T. Chaowasku, pers. comm.), and will not be discussed further
here; the other two clades are evaluated here, with the valida-
tion of new nomenclatural combinations.
The following morphological and anatomical characters
were found to be particularly useful for diagnosing clades II
and III: (1) pattern of secondary leaf venation (brochidodro-
mous versus eucamptodromous); (2) insertion of secondary
veins to midrib of the leaf (decurrent or not); (3) pattern of
tertiary leaf venation (reticulate versus percurrent); (4) shape of
leaf base; (5) symmetry of leaf base; (6) arrangement of vascu-
lar bundles in the leaf midrib (presence or absence of an adaxial
arch of vascular tissue towards the base of the leaf); (7) ovule
number per carpel (and hence seed number per monocarp);
(8) seed size; (9) endosperm rumination (lamelliform versus
spinifor m); and (10) endosper m te xture (sof t vers us gla ss-like).
The diagnostic morphological characteristics are summarized
in Table 1, together with data on the sister groups Neo-uvaria
and Popowia.
Species in clade II are characterized by eucamptodromous
leaf venation (sensu Hickey, 1979), in which the secondary
veins are parallel, upturned and gradually diminish towards
the apex, connecting to subsequent secondary veins by a series
Fig. 1.
Bayesian 50% majority-rule consensus tree of Annonaceae inferred from combined matK, rbcL and trnL-F data under pa rtitioned models
(showing basal lineages only: tribe Miliuseae shown in Fig. 2). Numbers at the nodes indicate Bayesian posterior probabilities, and maximum
parsimony and maximum likelihood bootstrap values (> 50%) in that order.
Uvaria lucida
Pseudoxandra lucida
Fenerivia heteropetala
Trigynaea lanceipetala
Cleistopholis glauca
Anaxagorea silvatica
Mkilua fragrans
Malmea dielsiana
Monanthotaxis whytei
Ephedranthus sp
Oxandra espintana
Mwasumbia alba
Onychopetalum periquino
Xylopia peruviana
Ruizodendron ovale
Polyceratocarpus pellegrinii
Greenwayodendron oliveri
Maasia glauca
Pseudomalmea diclina
Bocageopsis multiflora
Cananga odorata
Goniothalamus tapis
Fenerivia madagascariensis
Cymbopetalum brasiliense
Fenerivia capuronii
Mosannona costaricensis
Klarobelia inundata
Tetrameranthus duckei
Guatteria sellowiana
Cremastosperma cauliflorum
Piptostigma mortehani
Pseudephedranthus fragrans
Cyathocalyx martabanicus
Dasymaschalon macrocalyx
Annickia pilosa
Maasia discolor
Unonopsis stipitata
1/87/91
1/94/97
1/51/72
1/100/100
1/98/99
1/99/100
1/95/96
1/100/100
1/99/99
1/96/93
1/100/100
1/99/100
1/96/93
0.84/-/-
1/99/99
0.96/63/75
0.64/-/54
1/78/75
1/100/100
1/100/100
1/87/73
0.92/78/78
1/80/83
1/100/100
1/99/100
1/99/99
1/99/100
1/87/95
1/93/98
Fig. 2
Annonoideae
Malmeoideae
Anaxagoreoideae
Ambavioideae
Maasia
Fenerivia
Monocarpia euneura
1025
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1025Version of Record (identical to print version).
Marsypopetalum triste
Polyalthia cf. glabra
Alphonsea kinabaluensis
Polyalthia lateritia
Polyalthia obliqua
Polyalthia hypogaea
Haplostichanthus ramiflorus
Polyalthia flagellaris
Woodiellantha sympetala
Popowia hirta
Polyalthia cerasoides
Mitrephora keithii
Polyalthia insignis
Polyalthia suberosa
Haplostichanthus lanceolata
Polyalthia angustissima
Pseuduvaria pamattonis
Tridimeris hahniana
Miliusa velutina
Polyalthia sinclairiana
Miliusa lineata
Platymitra macrocarpa
Polyalthia australis
Polyalthia debilis
Polyalthia evecta
Haplostichanthus rufescens
Haplostichanthus longirostris
Haplostichanthus submontanus
Phaeanthus splendens
Polyalthia kingii
Trivalvaria costata
Polyalthia motleyana
Polyalthia trochilia
Meiogyne virgata
Polyalthia laui
Alphonsea boniana
Stenanona panamensis
Neo-uvaria parallelivenia
Meiogyne stenopetala
Polyalthia korinti
Popowia odoardoi
Phaeanthus ophthalmicus
Enicosanthum fuscum
Polyalthia cinnamomea
Pseuduvaria setosa
Polyalthia kanchanaburiana
Sageraea lanceolata
Trivalvaria macrophylla
Enicosanthum klemmei
Marsypopetalum lucidum
Polyalthia sp.
Enicosanthum erianthoides
Polyalthia cauliflora
Polyalthia congesta
Polyalthia xanthopetala
Polyalthia borneensis
Polyalthia lateriflora
Popowia pisocarpa
Polyalthia parviflora
Polyalthia subcordata
Desmopsis schippii
Marsypopetalum littorale
Polyalthia longifolia
Polyalthia michaelii
Polyalthia cf. miliusoides
Neo-uvaria acuminatissima
Polyalthia obtusa
Marsypopetalum crassum
Fitzalania heteropetala
Polyalthia bullata
Polyalthia cf. subsessilifolia
Orophea celebica
Sapranthus viridiflorus
Enicosanthum paradoxum
Mitrephora polypyrena
Stelechocarpus burahol
Polyalthia pendula
Polyalthia coffeoides
Orophea enterocarpa
Polyalthia stuhlmannii
Enicosanthum cupulare
Polyalthia sclerophylla
Enicosanthum membranifolium
Stelechocarpus cauliflorus
Haplostichanthus johnsonii
Polyalthia stenopetala
Marsypopetalum pallidum
Polyalthia celebica
0.71/-/52
1/86/90
0.65/-/-
1/99/100
0.96/53/58
1/86/82
1/100/100
0.99/-/55
1/75/86
1/94/95
0.9/-/51
1/91/93
1/95/97
0.75/55/64
1/78/84
0.96/-/-
0.87/-/-
0.69/-/-
0.82/-/-
1/88/96
0.88/-/-
0.97/64/83
1/86/89
1/60/61
1/65/68
0.57/-/-
1/99/99
1/100/98
0.99/63/75
1/74/72
0.64/-/-
1/62/59
1/98/97
1/93/92
1/100/100
1/100/100
1/100/100
1/99/97
0.55/-/-
1/87/93
0.83/54/57
0.59/-/-
1/63/78
0.93/63/72
1/91/88
0.99/-/-
1/100/100
1/69/77
1/71/57
0.67/-/54
0.63/-/-
1/56/69
0.7/56/70
0.85/-/-
1/-/58
0.96/64/66
1/76/86
0.99/63/62
Marsypopetalum
Clade I
Clade II
Clade III
0.93/-/58
Fig. 2.
Bayesian 50% majority-rule con-
sensus t ree of An nonaceae tribe Mili-
useae inferred from combined matK,
rbcL and trnL-F data under partitioned
models (basal lineages shown in Fig. 1).
Numbers at the nodes indicate Bayesian
posterior probabilities, and maximum
parsimony and maximum likelihood
bootstrap values (> 50%) in that order.
Clades I–III discussed in text.
1026
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1026 Version of Record (identical to print version).
of cross veins, and lacking prominent marginal loops (e.g.,
Enicosanthum fuscum (King) Airy Shaw: Fig. 3A; Klucking,
1986). Unlike most other members of clade II, Polyalthia
longifolia (Sonn.) Thwaites is weakly brochidodromous with
fine and delicate veins, closely resembling species of Maasia
(Rogstad, 1989; Sinclair, 1955), despite being nested within
clade II. Eucamptodromous venation with percurrent tertiary
veins is widespread in tribe Miliuseae, and can be observed in
Neo-uvaria (sister to clade II) as well as Mitrephora Hook. f.
& Thomson, Orophea p.p., Phaeanthus Hook. f. & Thomson,
Popowia and Trivalvaria; the same leaf venation pattern is fur-
thermore observed in Monocarpia Miq., which is the sister to
tribe Miliuseae. The eucamptodromous leaf venation typical of
most species in clad e II contras ts st r ong ly with sp e cies in clade
III, which have “festooned brochidodromous” venation (sensu
Hickey & Wolfe, 1975), with secondary veins anastomosing
and forming brochidodromous loops in which the second-
ary loops exist outside the main brochidodromous arch (e.g.,
Polyalthia flagellaris (Becc.) Airy Shaw: Fig. 3B; Klucking,
1986). Brochidodromous venation with reticulate tertiary veins
is not observed in the sister clade, Popowia, although this foliar
venation patter n occurs in several other genera within tribe
Miliuseae, including Alphonsea Hook. f. & Thomson p.p.,
Miliusa p.p., Sageraea Da l zel l p.p. and Stelecho carpus H oo k. f.
& Thomson (Klucking, 1986).
Differences also exist between clades II and III in the
manner in which the secondary leaf veins connect with the
midrib (character 2) and the pattern of tertiary venation (char-
acter 3). Species in clade II typically show decurrent insertion
of secondary veins (e.g., Polyalthia lateriflora (Blume) King:
Fig. 4A), whereas this feature is absent in species in clade III
(e.g., P. cauliflora Hook. f. & Thomson: Fig. 4B). Decurrent
insertion of secondary veins is unusual in tribe Miliuseae and
does not occur in the sister clade, Neo-uvaria. Species in clade
II have percurrent tertiary veins (e.g., Enicosanthum fuscum:
Fig. 3A), although this is only weakly manifested in P. coffe-
oides (Hook. f. & Thomson) Hook. f. & Thomson, P. longifolia
and P. sclerophylla Hook. f. & Thomson (Mols & al., 2004a).
In contrast, species in clade III have reticulate tertiary venation
(e.g., Polyalthia flagellaris: Fig. 3B), except for P. cinnamomea
Table 1.
Diagnostically important morphological characters of clade II (Monoon s.l.) and clade III (Polyalthia s.str.) and their respective sister
clades, Neo-uvaria and Popowia. Data from personal observations and from the following sources: Jovet-Ast (1942); Sinclair (1955); Klucking
(1986); van Setten & Koek-Noorman (1992); Mols & al. (2004b); Moeljono (2009); and Chaowasku & al. (2011).
Character Clade II (Monoon s.l.) Neo-uvaria Clade III (Polyalthia s.str.) Popowia
1 Pattern of secondary
leaf venation
Eucamptodromous (rarely
weakly brochidodromous)
Eucamptodromous Brochidodromous Eucamptodromous
2 Insertion of secondary
veins to midrib
Decurrent (rarely
not decurrent)
Not decurrent Not decurrent Not decurrent
3 Pattern of tertiary
leaf venation
Percurrent (rarely
reticulate)
Percurrent Reticulate (rarely
percurrent)
Percurrent
4 Shape of leaf base Cuneate, obtuse or
rounded, cordate (some-
times auriculate or acute)
Acute to obtuse Acute, obtuse or rounded
(sometimes subcordate to
cordate)
Acute, obtuse or rounded
5 Symmetry of leaf base Usually symmetrical Symmetrical Asymmetrical Slightly asymmetrical
6 Arrangement of vascular
bundles in leaf midrib
towards base of leaf
Simple, with only one
abaxial arch of vascular
tissue
Not observed Complex, with both ab-
axial and adaxial arches
Three separate bundles
(Popowia pisocarpa)
7 Ovule number per carpel 11 or 2 2–6 1 or 2 (–4)
8 Seed size (15–)20–30 × (10–)19
× (8–)11–17 mm
20–41(–50) × 13–20
(–35) × 13–20(–35) mm
6–11 × 5–9 × 4–7 mm (5–)6–13 × 9–13 × 5–6 mm
or (5–)6–13 × 4–5 ×
4–5 mm
9 Endosperm rumination Lamelliform Lamelliform Spiniform, sometimes
slightly lamelliform
Spiniform
10 Endosperm texture Usually soft Soft Usually glass-like Sometimes glass-like
1027
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1027Version of Record (identical to print version).
Hook. f. & Thomson (Mols & al., 2004a) and P. stenopetala
(Hook. f. & Thomson) Finet & Gagnep., which have weakly
percurrent tertiary veins.
The shape and symmetry of the leaf base (characters 4
and 5) are also useful for diagnosing clades II and III (Mols
& al., 2004a). The leaves of species in clade II are basally el-
liptic to obtuse to rounded, rarely subcordate or cordate, and are
usually symmetrical; the insertion of the petiole always appears
flush with the lamina (e.g., Polyalthia australis (B ent h.) Jessup:
Fig. 4C). In contrast, the leaves of species in clade III are basally
acute, obtuse, subcordate, cordate or auriculate, and somewhat
asymmetrical. Without exception, the insertion of the petiole in
species of clade III superficially appears to be below the plane of
the lamina (e.g., P. motleyana (Hook . f.) Ai r y Shaw: Fig. 4D; an d
P. bullata K i ng: Fig. 4E); th is type of pe tiole inser t ion ma ke s the
petiole appear very short when the leaf is viewed from above.
The asymmetry of the leaf base and the superficially slightly
abaxial petiole insertion characteristic of species in clade III are
unusual in tribe Miliuseae, with the vast majority of species in
other clades within the tribe resembl ing those in clade II (Mols
& al., 2004a). Although the leaf base of species in Popowia is
usually slightly asy m met r ic al (Sinclair, 1955; Moeljono, 20 09),
this is generally not as evident as in clade II.
Jovet-Ast (1942) identified two basic types of vascular
anatomy in the leaf midribs of Polyalthia s.l. (character 6).
In the first type (Fig. 4F), the vascular bundle forms a single
abaxial arch in transverse section (either continuous or inter-
rupted), surrounded by a sheath of sclerenchyma; disconti-
nuities in the arch are sometimes manifested as three distinct
lobes. This vascular arrangement is typical of species in clade II
(e.g., Polyalthia lateriflora: Fig. 4F). Specie s in this clade oft en
exhibit longitudinal fur rows along the midrib on the abaxial
leaf surface (e.g., P. lateriflora: Fig. 4A), which are likely to
be associated with the lobes of the vascular tissue discussed
above. The second arrangement of vascular tissue in the midrib
identified by Jovet-Ast (1942) is more complex (Fig. 4G) and
ha s been inter p ret e d as de r ived (Van Sette n & Koe k-Noor ma n ,
1986). Two arches of vascular tissue (abaxial and adaxial, sur-
rounded by a common sclerenchyma sheath) are evident in the
midrib towards the base of the leaf, although the adaxial arch
is not evident towards the leaf apex. This vascular arrange-
ment is typical of species in clade III (e.g., P. evecta Fi net
& Gagnep.: Fig. 4G). The distribution of these character states
in tribe Miliuseae is unclear because of the paucity of leaf
anatomical studies; according to Jovet-Ast (1942) and Metcalfe
(1987), however, Miliusa, Mitrephora, Orophea and Sageraea
species all have a single arch of vascular tissue in the midrib, as
observed in clade II. It therefore appears that the more complex
double-arched vascular arrangement is taxonomically more
restricted; significantly, however, Popowia pisocarpa (Blume)
Endl. (representative of the sister clade) has three separate vas-
cular bundles in the midrib (B. Xue, pers. obs.).
Ovule number per carpel (and hence seed number per
monocarp; character 7) has long been recognised as a useful
taxonomic character in studies of Polyalthia s.l. (e.g., Hooker
& Thomson, 1872). Species in clade II have a solitary, basal
ovule in each carpel, whereas species in clade III have at least
two ovules, laterally arranged, as observed in most genera in
tribe Miliuseae (Mols & al., 2004a). Solitary ovules are not
unique to species in clade II, however, but are observed in sev-
eral Miliuseae lineages, including the sister genus Neo-uvaria
(Mols & al., 2004a; Chaowasku & al., 2011), as well as Marsy-
popetalum and Trivalvaria (Mols & al., 20 0 4a; Xue & al., 2011),
Miliusa p.p. (Mol s & Keßler, 2003; Mols & al., 2004a), Phaean-
thus (Mols & Keßler, 20 00; Mols & al., 2004a), Polyalthia cla de
I (Mols & al., 2004a), and Popowia p.p. (Mols & al., 2004a).
Seed size (character 8) consistently differs between the two
clades: species in clade II have ellipsoid to oblong seeds that
are comparatively large (generally > 1 cm long, and ca. 1 cm
in other dimensions), whereas species in clade III have ovoid,
plano-convex or discoid seeds with at most only one dimension
exceeding 1 cm (Van Setten & Koek-Noorman, 1992). Seed
size is highly variable in Miliuseae: comparatively large seeds
occur in Neo-uvaria (sis ter to cla de II) (Ch aowask u & al., 2011),
as well as in Miliusa p.p., Meiogyne Miq. p.p., Phaeanthus,
Platymitra Boerl. and Stelechocarpus; and relatively small
seeds also occur in Popowia (sister to clade III), as well as in
Fitzalania F. Muel l., Sageraea p.p., Meiogyne p.p., Mitrephora
p.p. and Orophea p.p. (Van Setten & Koek-Noorman, 1992).
Van Setten & Koek-Noorman (1992) identified two main
types of endosperm rumination (character 9): lamelliform (or
lamellate) and spiniform, although intermediate forms also
occur. The majority of lineages in tribe Miliuseae have spini-
form ruminations (e.g., Polyalthia suberosa (Roxb.) Thwaite s:
Fig. 5A). Lamelliform ruminations are present in Polyalthia
clade II (e.g., Polyalthia obtusa Craib: Fig. 5B), as well as
Alphonsea elliptica Hook. f. & Thomson, Miliusa, Phaeanthus,
Neo-uvaria, Sageraea, Sapranthus Se eman n and Stelechocar-
pus (Mols & al., 2004a).
Fig. 3.
Leaf venation patterns in selected species from clades II and III.
A,
Enicosanthum fuscum (clade II) showing eucamptodromous vena-
tio n with par al lel and upt u rned secon da r y veins, and scalari form ter t ia-
ry vein s (Anonymous s.n., L: barc ode: L01820 85, ac ces si on: 947176118).
B,
Polyalthia flagellaris (clade III) show ing brochidodromou s venation
with prominent intermarginal veins, cur ved anastomosing secondary
veins and reticulate tertiar y veins (W.L. Chew CWL345, L: barcode
L0188611, accession: 47782). Redrawn from Klucking (1986): A,
Caren Pearl Shin; B, Vatsala Mir naalini. — Scale bars: 1 cm.
1028
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1028 Version of Record (identical to print version).
Fig. 4.
Leaf mor pholog y in sele cted species from cla des II and III.
A–B,
Leaf midrib (abaxial):
A,
Polyalthia lateriflora (clade II ), showing long i-
tudinal furrows on midrib, and decurrent inser tion of secondary veins (Y. Laumonier TFB 1205, L);
B,
Polyalthia caulif lora (clade III), showing
absence of longitudinal furrows on midrib, and non-decurrent insertion of secondary veins (T. & P. 859, L).
C–E,
Leaf base shape:
C,
Polyalthia
australis (clade II), show ing obt use and sym metrical leaf base, with petiole appearing f lush with la mi na sur fac e;
D,
Polyalthia motleyana (cla de
III), showing acute and asym metrical leaf base, with petiole superficially below lamina surface;
E,
Polyalthia bullata (clade II I), showi ng co rda te
leaf base, with petiole super ficially below lamina surface.
F & G,
Midrib bundles in transverse section:
F,
Polyalthia lateriflora (clade II), show-
ing simple midrib bundle, with an inter rupted arch of phloem bordering the xylem, and a sheath of sclerenchyma surrounding the phloem and
xylem, forming
three
lobes
(A.M.A.S. Attanayake AA4, HKU);
G,
Polyalthia evecta (clade III), showing a complex midrib bundle, with
abaxial
and
adaxial arches completely surrounded by a sclerenchyma
ring
(P. Chalermglin 521114-2, HKU)
. — Scale bars: A & B, 1 mm; F & G,
0.2 mm. — Photos: A, B, F & G, Bine Xue; C & D, Piya Chalermglin; E, Tang Chin Cheung.
1029
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1029Version of Record (identical to print version).
Annonaceae seeds also differ in the texture of the endo-
sperm (character 10). Van Setten & Koek-Noorman (1992) dis-
ti nguis hed sof t and very har d (glass -li ke) en dos perms , alt hough
both character states are widespread in tribe Miliuseae and hence
are of limited phylogenetic significance (Mols & al., 2004a).
Seeds of species in clade II (and the sister group Neo-uvaria)
often have a soft endosperm (e.g., P. obtusa: Fig. 5D), whereas
those of species in clade III (and the sister group Popowia) ty pi-
cally have a glass-like endosperm (e.g., P. suberosa: Fig. 5C).
In conclusion, the morphological data allow for a clear
differentiation of the Polyalthia cla des II and III, alth oug h ide n-
tification of synapomorphies is constrained by poor resolution
of the backbone of the phylogeny in the tribe. The molecular
analyses nevertheless provide strong support for taxonomic
and nomenclatural changes, as detailed below.
TAXONOMIC TREATMENT
New nomenclatural combinations in Monoon. —
Clade
II (Fig. 2) consists of all sampled species of Enicosanthum
(including its type species), the type species of Woodiellantha,
and 15 Polyalthia spec ies (alt hou g h excludi ng the ty p e spec ie s,
P. subcordata). The name of one of these Polyalthia species,
P. lateriflora, was based on the basionym Monoon lateriflo-
rum, the type species of the genus Monoon. Since the name
Monoon (Miquel, 1865) has priority over the names Enicos-
anthum (Beccari, 1871) and Woodiellantha (Rauschert, 1982)
that are currently in use, we adopt the name Monoon for all spe -
cies in this clade. This necessitates the large-scale transfer of 37
Polyalthia species (including morphologically similar species
not sampled in the molecular study), the single Woodiellantha
species, as well as 18 species from Enicosanthum to Monoon.
This total of 56 nomenclatural changes greatly exceeds the 42
changes that would have been required if conservation of the
name Enicosanthum had been approved, as recommended by
Saunders & Xue (2011). The genus Monoon as forme rly rec og-
nised is taxonomically heterogeneous, with many species now
recognised in other genera: the current taxonomic disposition
of all names previously included in Monoon are enumerated
in Appendix 2.
Monoon Miq. in Ann. Mus. Bot. Lugduno-Batavi 2: 15. 1865
Polyalthia sect. Monoon (Miq.) Benth. & Hook. f., Gen.
Pl. 1(3): 956. 1867 ≡ Unona sect. Monoon (Miq.) Baill.,
Hist. Pl. 1: 213. 1868 Ty pe : Monoon lateriflorum (Blume)
Miq., designated by Saunders & Xue (2011).
= Enicosanthum Becc. in Nuovo Giorn. Bot. Ital. 3: 183. 1871
– Type: Enicosanthum paradoxum Becc.
= Marcuccia Becc. in Nuovo Giorn. Bot. Ital. 3: 181. 1871
Ty p e: Marcuccia grandif lora Becc.
= Griffithianthus Merr. in Philipp. J. Sci., C 10: 231. 1915 ≡
Griffithia King in Ann. Roy. Bot. Gard. Calcutta 4: 10.
1893, nom. illeg., non Griffithia Wight & Arn., Prodr. Fl.
Ind. Orient. 1: 399. 1834 – Type: Griffithianthus magno-
liiflorus (Ho ok. f. & Thom son) Merr. [‘magnoliae florus’].
= Woodiellantha Rau schert in Taxon 31: 555. 1982Woodiella
Merr. in J. Straits Branch Roy. Asiat. Soc. 85: 187. 1922,
nom. illeg., non Woodiella Sacc. & P. Syd. – Type: Woo diel -
lantha sympetala (Merr.) Rauschert.
= Cleistopetalum H. Okada in Acta Phytotax. Geobot. 47: 4.
1996 – Type: Cleistopetalum borneense H. Okada.
Fig. 5.
Seeds of selected species
from clades II and III.
A,
Poly althia
suberosa (clade II), showing spini-
form ruminations, transverse section
(P.
Chalermglin & B. Xue XB12,
HKU)
;
B,
Poly althia obtusa (c la d e
III) showing the longitudinal groove
around circumference, and lamelli-
form ruminations, transverse section
(P.
Chalermglin & B. Xue XB9,
HKU)
;
C,
Polyalthia suberosa (clad e
III), showing glass-like endosperm,
longitudinal section (P.
Chalermglin
& B. Xue XB12, HKU)
;
D,
Polyal-
thia obtusa (clade II), showing soft
endosper m, longit udinal section
(P.
Chalermglin & B. Xue XB9,
HKU)
. —
Scale bars: 2 mm.
1030
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1030 Version of Record (identical to print version).
Small to large trees. Leaves glabrous or hairy, base acute,
obtuse or rounded (sometimes subcordate to cordate), usually
symmetrical, apex acute to rounded (sometimes caudate); mid-
rib immersed above, prominent beneath with lateral furrows;
secondary veins ± straight, oblique, without conspicuous anas-
tomosis, insertion on midrib decurrent; tertiary veins weakly to
strongly percurrent (rarely reticulate). Inflorescences axillary or
on the older branches from axils of fallen leaves or on tubercles
or short leafless twigs on the main trunk near ground, single- to
several-flowered. Sepals 3, imbricate or valvate. Petals 6 in 2
whorls, imbricate or valvate, spreading or erect, linear, strap-
shaped, lanceolate or ovate, sometimes fleshy, (greenish-)white
to (greenish-)yellow, rarely red although sometimes with red
flush on the inner side of petals. Stamens numerous; connectives
truncate. Ovaries numerous; ovules solitary, basal. Monocarps
ellipsoid, oblong or cylindrical, ≥ 2 cm long, stipes generally
> 1 cm, rarely sessile or subsessile. Seed 1 per monocarp; seeds
> 1 cm long, oblong, rugose or smooth, with a distinct longitudi-
nal circumferential groove; endosperm lamelliform, soft.
1. Monoon acuminatum (Thwaites) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia acuminata Thwaites, Enum .
Pl. Zeyl.: 399. 1864, non Polyalthia acuminata Oliv., Fl.
Trop. Afr. 1: 26. 1868, nom. illeg. Enicosanthum acumi-
natum (Thwaites) Airy Shaw in Bull. Misc. Inform. Kew
1939: 277. 1939 – Type: [Sri Lanka], Ceylania, ad marai-
Calai, prope p. Ratrapovra, without date, G.H.K. Thwaites
CP 3653 (holotype: K [photo!]; isot y pes: P [photo!], PDA,
US [×2] [photo!]).
2. Monoon amischocarpum (I.M. Turner) B. Xue & R.M.K.
Saunders, comb. nov. Polyalthia amischocarpa I.M.
Turner in Malayan Nat. J. 62: 363, 366–368. 2010 – Type:
Indonesia, Central Kalimantan, 112°27.575ʹ E, 1°24.388ʹ S,
27 Oct. 1996, P. Keßler & al. PK1516 (holotype: L 3];
isotypes: A, BO, K [photo!], WAN).
3. Monoon anomalum (Becc.) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia anomala Becc. in Nuovo Giorn.
Bot. Ital. 3: 188–189, tab. 5, figs. 1–8. 1871 – Type: [Ma-
laysia], Borneo, Sarawak, Mt Mattan [Gunung Matang],
May 1866, O. Beccari PB1605 (holotype: FI-B [photo!],
Erb. coll. Becc. no. 481).
= Polyalthia clavigera King in J. Asiat. So c. Be nga l, Pt. 2, Nat.
Hist. 61: 60– 61. 1892. (Synonymy fide Turner, 2010: 43)
= Polyalthia glomerata King in J. Asiat. Soc. Bengal, Pt. 2,
Nat. Hist. 61: 61. 1892. (Synonymy fide Turner, 2010: 43)
= Cleistopetalum sumatranum H. Okada in Acta Phytotax.
Geobot. 47: 5– 6, figs. 1a–b, 4. 1996. (Synonymy fide
Turner, 2010: 43)
4. Monoon asteriellum (Ridl.) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia asteriella Ridl. in J. Straits Br a nch
Roy. Asiat. Soc. 82: 169. 1920 – Type: [Malaysia], Perak,
Taiping Hills, Maxwell’s Hill, Feb. 1891, H.N. Ridley 2986
(holotype: K [photo!], barcode K000691443; isotypes:
CAL, SING [photo!]).
5. Monoon australe ( B e nth.) B. Xue & R.M.K. Saunders,
comb. nov. Popowia australis Benth., Fl. Austral. 1:
52. 1863 ≡ Polyalthia australis (Benth.) Jessup in Aust ro-
baileya 2: 227. 1986 – Type: Australia, Northern Ter ritory,
Barrow Bay, Port Essington, May 1840, J. Armstrong 623
(holotype: K).
= Polyalthia holtzeana F. Muell. in S. Sci. Rec. 2: 230. 1882.
(Synonymy fide Jessup, 2007: 50)
= Polyalthia armitiana F. Muell . ex F.M. Bailey, Syn. Queensl.
Fl., Suppl. 3: 6. 1890. (Synonymy fide Jessup, 2007: 50)
6. Monoon barnesii (Mer r.) B. Xue & R. M.K . Sau nder s, comb.
nov. Polyalthia barnesii Me r r., Publ. Bur. Sci. Gov. Lab.
17: 15–16. 1904 – Type: Philippines, Luzon, Province of
Bataan, Lamao River, Mar. 1904, P.T. Barnes Forestry Bu-
reau 596 (holotype: PNH †; lectotype, designated here:
K [photo!], barcode K00691640; isotypes: NY [photo!],
US [photo!]).
7. Monoon borneense ( H. Ok a da) B. Xue & R.M.K . Sau nde r s,
comb. nov. Cleistopetalum borneense H. Oka d a in Act a
Phytotax. Geobot. 47: 4–5, fig. 3. 1996 – Type: Indone-
sia, Bor neo, East Kalimantan, Sungai Menubar, 12 Dec.
1980, M. Kato & H. Wiriadinata 7119 (holotype: KYO;
isotypes: BO, L).
= Polyalthia macropoda King in J. Asiat. Soc. Bengal, Pt. 2,
Nat. Hist. 61: 60. 1892, non Polyalthia macropoda ( M iq.)
F. Muell ., Descr. Note s Papuan Pl. 5: 95. 1877 Polyalthia
sinclairiana I.M. Turner in Gard . Bu ll. Singapore 58: 275.
2007. (Synonymy fide Turner, 2010: 42)
8. Monoon brevipedunculatum (Boerl.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia brevipedunculata Boerl.,
Cat. Pl. Phan. 1: 18–19. 1899 – Type: Kebun Raya Bogor
IV.H.57 and X. F. 21 (syntypes: BO).
9. Monoon chloranthum (Lauterb. & K. Schum.) B. Xue
& R.M.K. Saunders, comb. nov. Polyalthia chloran-
tha Lauterb. & K. Schum. in Schumann & Lauterbach,
Fl. Schutzgeb. Südsee: 316. 1901 Type: [Papua New
Guinea], Kaiser Wilhelmsland, Gogol Mittellauf, 21 Nov.
189 0, K. Lauterbach 1024 (holotype: B [photo!]).
10. Monoon coffeoides (Thwaites ex Hook. f. & Thomson)
B. Xue & R.M.K. Saunders, comb. nov.Guatteria cof-
feoides Thwaites ex Hook. f. & Thomson, Fl. Ind. 1: 141–
142. 1855 Polyalthia coffeoides (Thwaites ex Hook. f.
& Thomson) Hook. f. & Thomson in Hooker, Fl. Brit. India
1: 62. 1872 – Type: [Sri Lanka], 1854, G.H.K. Thwaites CP
2503 (holotype: K; isotype: P [photo!]).
11. Monoon congestum (Ridl.) B. Xue & R.M.K. Saunders,
comb. nov. Xylopia congesta Ridl. in Bull. Misc. Inform.
Kew 1912: 387. 1912 & Sarawak Mus. J. 1: 94. 1913 ≡ Poly-
althia congesta (Ridl.) J. Sinclai r in Sarawak Mus. J. 5: 607.
1951 Type: [Malaysia], Sarawak, 1865–68, O. Beccari
PB 2654 (holotype: K [photo!]; isotypes: A [×2], BM, P).
1031
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1031Version of Record (identical to print version).
12. Monoon congregatum (King) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia congregata King in J. Asiat. Soc.
Bengal, Pt. 2, Nat. Hist. 61: 61–62. 1892 ≡ Enicosanthum
congregatum (King) Airy Shaw in Bull. Misc. Inform.
Kew 1939: 277. 1939 – Type: [Malaysia], Perak, Larut,
Aug. 1883, King’s collector 4831 (lectotype, designated
here: K [photo!], barcode K000691419; isolectotypes:
CAL, DD, SING [photo!]).
13. Monoon coriaceum ( R id l .) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia coriacea Ridl. in Bull. Misc.
Inform. Kew 1912: 383–384. 1912 Enicosanthum co-
riaceum (Ridl.) Airy Shaw in Bull. Misc. Inform. Kew
1939: 277. 1939 – Type: [Malaysia], Sarawak, Mt. Buan
limestone, 15 Dec. 1892, G.D. Haviland 2002 (lectotype:
K [photo!], barcode K000691411, designated by Turner,
2012: 240; isolectotype: SING [photo!]).
14. Monoon cratiense (Bân) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia cratiensis n in Novosti Sist.
Vyssh. Rast. 11: 187–189. 1974 – Type: [Cambodia], Kratié
Province, Pont du Prek Slong, 10 Feb. 1929, E. Poilane
16311 (holotype: A; isotypes: P [×2] [photo!]).
15. Monoon cupulare (King) B. Xue & R.M.K. Saunders,
comb. nov.Griffithia cupularis King in Ann. Roy. Bot.
Gard. Calcutta 4: 9–10, fig. 219. 1893 ≡ Griffithianthus
cupularis (King) Merr. in Philipp. J. Sci., C 10: 231. 1915
Enicosanthum cupulare (King) Ai r y Shaw in Bul l. Misc.
Inform. Kew 1939: 277. 1939 – Type: [Malaysia], Perak,
Larut, May 1885, King’s collector 7630 (lectotype, desig-
nated here: K [phot o!], barc ode K00691422; isolecto t y pes:
BM, CAL, SING).
16. Monoon daclacense (Bân) B. Xue & R.M.K. Saunders,
comb. nov. Enicosanthum daclacense Bân, Fl. Vietnam
1: 26–27. 2000 – Type: Vietnam, Dac Lac, Dac Nong, Dao
Nghia, date unknown, H.V. Tue 185 (holotype: HN; iso-
types: HM, HN).
17. Monoon elongatum (Merr.) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia elongata Mer r. in Ph ilip p. J. Sci., C
3: 222–223. 1908 – Type: Philippines, Mindanao, Zambo-
anga District, Port Banga, alt. 50 m, Feb. 1908, H.N. Whit-
ford & W.I. Hutchinson FB 9456 (holotype: PNH †; lecto-
type, designated here: US [p hoto!], ba rco d e US0 0 0 98661).
18. Monoon erianthoides (Airy Shaw) B. Xue & R.M .K. Saun-
ders, comb. nov. Enicosanthum erianthoides Airy Shaw
in Bull. Misc. Inform. Kew 1939: 276. 1939 – Type: [Ma-
laysia], Sarawak, Mount Dulit, near Long Kapa, 19 Aug.
1932, P.W. Richards 1353 (holotype: K [×2] [photo!],
barcode K000691409 & K000691410; isotypes: A, SING
[photo!]).
19. Monoon fragrans (Dalzell) B. Xue & R.M.K. Saunders,
comb. nov. Guatteria fragrans Dalzell in Hookers
J. Bot. Kew Gard. Misc. 3: 206. 1851 ≡ Polyalthia fragrans
(Dalzell) Hook. f. & Thomson in Hooker, Fl. Brit. India 1:
63. 1872 – Type: India, Malabar, Concan, without date,
J.E. Stocks & Law s.n. (holotyp e: K?; isot y p e: P [photo!]).
20. Monoon fuscum (King) B. Xue & R.M.K. Saund ers, comb.
nov.Griffithia fusca King in Ann. Roy. Bot. Gard. Cal-
cutta 4: 10, fig. 220. 1893 [ba sed on: Griffithia Ma ing ay ex
King, nom. illeg., non Griffithia Wight & Arn.] ≡ Griffi-
thianthus fuscus (K i ng) Merr. in Ph ilipp. J. Sci., C 10: 231.
1915 ≡ Enicosanthum fuscum (King) Airy Shaw in Bull.
Misc. Inform. Kew 1939: 277. 1939 – Type: [Malaysia],
Perak, Ulu Bubong, Jul. 1886, King’s collector 10404 (lec-
totype, designated here: K [photo!], barco de K000691418;
isolectotypes: BM, CAL).
21. Monoon gigantifolium (Merr.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia gigantifolia Mer r. in Philipp.
J. Sci., C 10: 246–247. 1915 ≡ Enicosanthum gigantifolium
(Merr.) Airy Shaw in Bull. Misc. Inform. Kew 1939: 277.
1939 – Type: Philippines, Mindanao, District of Zambo-
anga, near Margosatubig, 11 May 1912, F.W. Foxworthy,
A. Demesa & A. Villamil FB 13763 (not located).
22. Monoon glabrum (Hook. f. & Thomson) B. Xue & R.M.K.
Saunders, comb. nov.Ellipeia glabra Hook. f. & Thom-
son in Hooker, Fl. Brit. India 1: 52. 1872 ≡ Polyalthia gla-
bra (Hook. f. & Thomson) J. Sinclair in Gard. Bull. Sin-
gapore 14: 315. 1955 – Type: [Malaysia], Malacca, 14 Dec.
1867, A.C. Maingay 3007 [Kew distr ibution no. 66] (holo-
type: K [×2] [photo!], barco de K000691571 & K000 691570;
isotype: CAL).
= Polyalthia curtisii Ridl. in J. Straits Branch Roy. Asiat. Soc.
54: 11. 1910. (Synonymy fide Sinclair, 1955: 315)
23. Monoon grandif lorum (Becc.) B. Xue & R.M.K. Saun-
ders, comb. nov. Marcuccia grandiflora Becc. in Nuovo
Giorn. Bot. Ital. 3: 183, fig. 3. 1871 Enicosanthum
grandi florum (Becc.) Airy Shaw in Bull. Misc. Inform.
Kew 1939: 277. 1939 – Type: [Malaysia], Sarawak, along
the stream of M. Mattan, Oct. 1866, O. Beccari PB2541
(lectotype: FI-B [×2], Erb. coll. Becc. nos. 187 & 187A,
designated by Turner, 2011: 26; isolectotype: K [photo!]).
24. Monoon grandifolium (Elmer) B. Xue & R.M.K. Saun-
ders, comb. nov.Polyalthia grandifolia Elmer in Leafl.
Philipp. Bot. 1: 291–292. 1908 ≡ Enicosanthum grandifo-
lium (Elmer) Airy Shaw in Bull. Misc. Inform. Kew 1939:
277. 1939 – Type: Philippines, Province of Leyte, Leyte,
Palo, Jan. 1906, A.D.E. Elmer 7358 (not located).
= Polyalthia nickersonii Elmer in Leaf l. Philipp. Bot. 5: 1733–
1734. 1913. (Synonymy fide Airy-Shaw, 1939: 277)
= Polyalthia pinnatinervia Elmer in Leafl. Philipp. Bot. 5:
1736–1738. 1913. (Synonymy fide Airy-Shaw, 1939: 277)
25. Monoon harmandii (Pierre) B. Xue & R.M.K. Saun-
ders, comb. nov. Unona harmandii Pierre, Fl. Forest.
1032
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1032 Version of Record (identical to print version).
Cochinch. 2: fig. 24. 1881 ≡ Polyalthia harmandii (P ier re)
Finet & Gagnep. in Bull. Soc. Bot. France 53: 94. 1906
Type: Vietnam, Brien Hoa Province, Song Be, Mar.
1873, L. Pierre 1365 (lectotype, designated here: P
[phot o!], barc ode P00372687; is ol ect otypes: A, K [p hot o!],
LE, P [×4] [photo!]).
26. Monoon hookerianum (Kin g) B. Xue & R.M .K. Saund ers,
comb. nov. Polyalthia hookeriana King in J. Asiat. Soc.
Bengal, Pt. 2, Nat. Hist. 61: 57–58. 1892 – Type: [Malaysia],
Perak, Feb. 1884, King’s collector [H.H. Kunstler] 555 0
(lectotype: K, designated by Turner, 2011: 72; isolecto-
types: CAL, P [photo!]).
27. Monoon hypogaeum (King) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia hypogaea King in J. Asiat. Soc.
Ben gal, Pt. 2, Nat. Hist. 61: 62–63. 1892 – Type: [Malay-
sia], Perak, Larut, 1881, King’s collector [H.H. Kunstler]
2437 (lectotype: K, designated by Turner, 2011: 72; isolec-
totype: CA L).
28. Monoon jucundum (Pierre) B. Xue & R.M.K. Saun-
ders, comb. nov.Unona jucunda Pierre, Fl. Forest.
Cochinch. 2: fig. 25. 1881 Polyalthia jucunda ( Pie r r e)
Finet & Gagnep. in Bull. Soc. Bot. France 53: 93. 1906 –
Type: [Vietnam], Bien Hoa Bao Chanh, Jul. 1877, L. Pierre
1795 (lectotype: P [photo!], designated by Bân, 2000: 90;
isolectotypes: A, BM).
29. Monoon kingii (Baker f.) B. Xue & R. M.K. Sau nders, comb.
nov. Polyalthia kingii Baker f. in J. Bot. 62(suppl.): 3.
1924 – Type: [Indonesia], Sumatra, Hills SW of Goenoeng-
Trang, Penanggoengan, Lampongs, 1881–82, H.O. Forbes
1556 (holotype: BM [photo!]; isotypes: B [×2] [photo!],
MO [×2] [photo!], P [photo!], SING [×2] [photo!]).
30. Monoon klemmei (Elmer) B. Xue & R.M.K. Saunders,
comb. nov.Polyalthia klemmei Elmer in Leafl. Philipp.
Bot. 5: 1735–1736. 1913 ≡ Enicosanthum klemmei (Elmer)
Airy Shaw in Bull. Misc. Inform. Kew 1939: 277. 1939
Type: Philippines, Palawan, Puerto Princesa (Mt Pul-
gar), Feb. 1911, A.D.E. Elmer 12644 (holotype: PNH,
†?; lectotype, designated here: NY [photo!], barcode
NY00026207; isotypes: BISH [photo!], K [photo! ], L!,
MO [photo!], P [photo!], US [photo!]).
31. Monoon laui (Merr.) B. Xue & R.M.K. Saunders, comb.
nov.Polyalthia laui Mer r. in Lingnan Sci. J. 14: 5– 6.
1935 Type: China, Hainan, Ngai District, Naam Shan
Leng, 26 Jul. 1932, S.K. Lau 318 (holotype: NY [photo!];
isotypes: B [photo!], LU, MO [photo!], NY, P [photo!], PE
[×4], US [photo!]).
32. Monoon liukiuense (Hatus.) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia liukiuensis Hatus. in J. Geobot.
26: 86–87, fig. 1. 1979 – Type: Japan, Ryukyus, Island Hat-
eruma, 9–15 Jun. 1975, K. Miyagi 5707 (holotype: RYU).
33. Monoon longifolium (Sonn.) B. Xue & R.M.K. Saunders,
comb. nov. Uvaria longifolia So n n., Voy. Inde s Orient. 2:
233, pl. 131. 1782 & Voy. Indes Orient. (octavo ed.) 3: 260.
1782 ≡ Unona longifolia (Sonn.) Dunal , Monog r. Anona c.:
109. 1817 ≡ Guatteria longifolia (Son n.) Wal l., Num er. List:
no. 6442. 1832 ≡ Polyalthia longifolia (Sonn.) Thwaites,
Enum. Pl. Zeyl.: 398. 1864 – Type: Sonnerat’s plate in Voy.
Indes Orient. 2: 233, pl. 131. 1782 (lectotype, designated
by Huber, 1985: 33).
34. Monoon macranthum (King) B. Xue & R.M.K. Saunders,
comb. nov.Polyalthia macrantha King in J. Asiat. Soc.
Bengal, Pt. 2, Nat. Hist. 61: 54–55. 1892 ≡ Enicosanthum
macranthum (King) J. Sinclair in Gard. Bull. Singapore
14: 190–191. 1955 – Type: [Malaysia], Perak, Larut, Sep.
188 4, King’s collector 6654 (lectotype, designated here:
L [photo!], barcode L0037926; isotypes: CAL, DD).
35. Monoon magnoliif lorum (Hook. f. & Thomson) B. Xue
& R.M.K. Saunders, comb . nov.Polyalthia magnoliiflora
Hook. f. & Thomson in Hooker, Fl. Brit. India 1: 64–65.
1872 [‘magnoliaef lora’] ≡ Griffithia magnoliipetala Main-
gay ex Ki ng in Ann. Roy. Bot. Gar d. Calcu t ta 4: 9, fig. 218.
1893, nom. illeg. [‘magnoliaepetala’] ≡ Griffithianthus
magnoliif lorus (Hook. f. & Thomson) Merr. in Philipp.
J. Sci., C 10: 231. 1915 [‘magnoliaef lorus’] ≡ Enicosan-
thum magnoliif lorum (Hook. f. & Thomson) Airy Shaw
in Bull. Misc. Inform. Kew 1939: 277–278. 1939 – Type:
[Malaysia], Malacca, 6 Feb. 1868, A.C. Maingay 3259 [Kew
distrib. no. 93] (lectotype, designated here: K[ photo!],
barcode K000691423; isolectotypes: CAL, K, L).
Hooker & Thomson (1872) published this species as Poly-
althia magnoliaeflora, adopting a name from an unpublished
manuscript of A.C. Maingay, although they erroneously tran-
scribed the specific epithet magnoliaepetala, use d by Ma ingay,
as magnoliaef lora. This error was corrected by King (1893),
although magnoliaeflora has priority, as noted by Merrill
(1915). The spel ling magnoliaef lora wa s fu r ther more cor rec ted
to magnoliif lora by Airy-Shaw (1939).
36. Monoon membranifolium (J. Sinclair) B. Xue & R.M.K.
Saunders, co mb. nov.Enicosanthum membranifolium
J. Sinclair in Gard. Bull. Singapore 14: 191–192. 1955
Type: [Malaysia], Kelantan, Gua Panjang at Gua Ninik, 21
Oct. 1927, M.R. Henderson SFN 19522 (lectotype, desig-
nated here: SING [photo!], barcode SING0048664; iso-
type s: K [photo!], SING [photo!], barc ode SI NG0 0 48665).
37. Monoon merguiense (Chatterjee) B. Xue & R.M.K. Saun-
ders, comb. nov. Uvaria merguiensis Chatterjee in J.
Indian Bot. Soc. 19: 77. 1940 ≡ Enicosanthum merguiense
(Chatterjee) J. Sinclair in Gard. Bull. Singapore 14: 45.
1953 – Type: [India], date unknown, Po Khant 11394 ( holo-
type: CAL; isotype: DD).
38. Monoon michaelii (C.T. White) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia michaelii C.T. Whit e in Bot.
1033
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1033Version of Record (identical to print version).
Bull. De pt. Agr ic. Queensland 20: 5. 1918 – Type: Aust ra-
lia, Queensland, Johnstone River, Jun. 1917, N. Michael 65
(holotype: BRI).
39. Monoon mindanaense (Elmer) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia mindanaensis Elmer in Leaf l.
Philipp. Bot. 5: 1734–1735. 1913 ≡ Enicosanthum mind-
anaense (Elmer) Airy Shaw in Bull. Misc. Inform. Kew
1939: 278. 1939 – Type: Philippines, Mindanao, District of
Davao, Sep. 1909, A.D.E. Elmer 11642 (lectotype, desig-
nated here: NY [photo!], ba rco de NY00026210; is otype s:
A, BISH [photo!], barcode BISH500494, K [photo!], bar-
code K000691402, MO [photo!]).
40. Monoon oblongifolium (C.B. Rob.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia oblongifolia C.B. Rob. in
Philipp. J. Sci., C 6: 202–203. Jul. 1911, non Polyalthia
oblongifolia Burck in Nova Gu i nea 8: 429. Dec. 1911, nom .
illeg. – Type: Philippines, Polillo, N of Burdeos, date un-
known, C.B. Robinson BS 9259 (not located).
41. Monoon obtusum (Craib) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia obtusa Craib in Bull. Misc. In-
form. Kew 1915: 421–422. 1915 Type: Thailand, Lam-
pang Province, mixed dry jungle, 360 m, 1 Apr. 1914,
A.F.G. Kerr 3189 (holotype: K [photo!]; isotype: BM).
42. Monoon pachyphyllum (K i ng) B. Xue & R. M.K . Sau nder s,
comb. nov. Polyalthia pachyphylla King in J. Asiat. Soc.
Bengal, Pt. 2, Nat. Hist. 61: 66 67. 1892 – Type: [Malay-
sia], Perak, at elevation under 1000 feet, King’s collector
6655 (lectotype, designated here: K [photo!], barcode
K000691559; isolectotypes: BM [photo!], CAL, SING).
King (1892) noted two seeds per monocarp, alt hough Sin-
clair (1955) found only one.
43. Monoon paradoxum (Becc.) B. Xue & R.M.K. Saunders,
comb. nov.Enicosanthum paradoxum Becc. in Nuovo
Giorn. Bot. Ital. 3: 184, figs. 5, 13–17. 1871 – Type: [Ma-
laysia], Sarawak, Bintulu, Sep. 1867, O. Beccari PB8770
(holotype: FI-B [×2], Erb. coll. Becc. nos. 185 & 185A).
44. Monoon patinatum (Jessup) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia patinata Jessup, Fl. Australia 2:
49–50, 450, fig. 10M. 2007 – Type: Australia, Queensland,
Malbon Thompson Forest Reserve, off Gordonvale–
Yarrabah road, 12 Apr. 2006, A. Ford & M. Bradford
AF4 811 (holotype: BRI; isotype: BRI).
Taxonomic placement of this species in Monoon is co r rob -
orated by unpublished partial matK and partial rbcL sequence
data (M. Harrington, CNS, pers. comm.).
45. Monoon polycarpum (Burck) B. Xue & R.M.K. Saunders,
comb. nov. Polyalthia polycarpa Burck in Nova Guinea
8: 429–430, pl. 70, fig. 1A–C. 1911 Type: [Indonesia],
New Guinea, Okaba, 7 Oct. 1907, B. Branderhorst 135
(holotype: U; isotypes: K [photo!], L [×3]).
= Polyalthia oblongifolia Burck in Nova Guinea 8: 429. Dec.
1911, nom. illeg., non Polyalthia oblongifolia C.B. Rob.
in Philipp. J. Sci., C 6: 202–203. Jul. 1911 Polyalthia
branderhorstii Fedde in Repert. Spec. Nov. Regni Veg.
12: 379. 1913.
Diels (1912: 133) reduce d Polyalthia polycarpa Bu rck to a
synonym of Polyalthia oblongifolia Burck, although the latter
name is illegitimate.
46. Monoon praestigiosum (J. Si n cla i r) B. Xue & R.M .K. Sau n-
ders, comb. nov. Enicosanthum praestigiosum J. Sinclair
in Gard. Bull. Singapore 14: 192–194, fig. 5. 1955 – Type:
[Malaysia], Johor, Sungei Kayu, 10 Oct. 1936, Kiah SFN
32017 (lecototype, designated here: SING [photo!], bar-
code SING00048666; isotypes: A, K [photo!], L!).
47. Monoon ramiflorum (Merr.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia ramiflora Merr. in Philipp.
J. Sci., C 10: 244 –245. 1915 – Type: Philippines, Luzon,
Prov. of Sorsogon, 6 Aug. 1906, J.H. Bridges FB 5160
( h o l o t y p e : P N H †; lectotype, designated here: K [ph oto!],
barcode K000691625; isotype: B [photo!]).
48. Monoon sclerophyllum (Hook. f. & Thomson) B. Xue
& R.M.K. Saunders, comb. nov. Polyalthia sclerophylla
Hook. f. & Thomson in Hooker, Fl. Brit. India 1: 65. 1872
– Type: [Malaysia], without locality or date, A.C. Maingay
101 (holotype: K [photo!]; isotypes: A, L!).
= Polyalthia purpurea Ridl. in J. Straits Branch Roy. Asiat.
Soc. 82: 168. 1920. (Synonymy fide Sinclair, 1955: 315)
49. Monoon shendurunii (Basha & Sasidh) B. Xue & R.M.K.
Saunders, comb. nov. Polyalthia shendurunii Bash a & Sa -
sidh. in Rheedea 4: 21. 1994 – Type: India, Kerala State,
Kollam district, Shenduruny, 25 Mar. 1992, N. Sasidharan
5842 (holotype: MH; isotype: KFRI).
50. Monoon simiarum (Buch.-Ham. ex Hook. f. & Thomson)
B. Xue & R.M.K. Saunders, comb. nov. Guatteria sim-
iarum Buch.-Ham. ex Wall., Numer. List: no. 6440. 1832,
nom. nud. ≡ Guatteria simiarum Buch.-Ham. ex Hook. f.
& Thomson, Fl. Ind. 1: 142. 1855 ≡ Polyalthia simiarum
(Buch.-Ham. ex Hook. f. & Thomson) Hook. f. & Thomson
in Hooker, Fl. Brit. India 1: 63. 1872 ≡ Unona simiarum
(Buch.-Ham. ex Hook. f. & Thomson) Baill. ex Pierre, Fl.
Forest. Cochinch. 2: fig. 23. 1881 Type: India, Silhet,
Assam, N. Wallich cat. 6440α (holotype: K-W).
= Polyalthia cheliensis Hu in Bull. Fan Mem. Inst. Biol. 10:
127–128. 1940. (Synonymy fide Li & Gilbert, 2011: 693)
51. Monoon sympetalum (Mer r.) B. Xue & R.M.K. Saunders,
comb. nov. Woodiella sympetala Merr. in J. Straits
Branch Roy. Asiat. Soc. 85: 187. 1922 [based on: Woodi -
ella Me rr., non Wo odie lla Sacc. & P. Syd.] ≡ Woodiellan-
tha sympetala (Merr.) Rauschert in Taxon 31: 555. 1982
– Type: [Malaysia], Sabah, Sandakan and vicinity, Sep.–
Nov. 1920, M. Ramos 1562 (holotype PNH †; lectotype: K
1034
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1034 Version of Record (identical to print version).
[photo!], barcode K000691315, designated by Turner, 2011:
107; isotypes A, B [photo!], BM, L, P, US).
= Woodiellantha sympetala Merr. var. grandifolia Ai r y Shaw in
Bull. Misc. Inform. Kew 1939: 284. 1939 ≡ Woodiellantha
grandifolia (Airy Shaw) Mat-Salleh & Latiff in Sanda-
kania 11: 52. 1998. (Synonymy fide Turner, 2011: 107)
52. Monoon thorelii ( P i e r r e) B. Xue & R. M .K. Saunde r s , comb.
nov. Unona thorelii Pierre, Fl. Forest. Cochinch. 2: fig.
22. 1881 Polyalthia thorelii (Pier re) Finet & Gagnep.
in Bull. Soc. Bot. France 53: 95. 1906 – Type: [Vietnam]
Crescit in vicinibus Saigon, Mar. 1876, L. Pierre 1506
(holo type: P [photo!]; isotypes: A, L [×2] [photo!]).
53. Monoon tirunelveliense (M.B. Vis wan . & Man i k.) B. Xue
& R.M.K. Saunders, comb. nov.Polyalthia tirunelve-
liensis M.V. Viswan. & Manik. in Kew Bull. 56: 217–218.
2001 – Type: India, Tamil Nadu, Kalakkad-Mundanthurai
Tiger Reserve, M.B. Viswantha & U. Manikandan 4542
(holotype: K; isotypes: MH, Sri Paramakalyani Centre for
Environmental Sciences).
54. Monoon viride (Craib) B. Xue & R.M.K. Sau nders, comb.
nov. Polyalthia viridis Craib in Bull. Misc. Inform. Kew
1914: 4. 1914 – Type: Thailand, 5 Feb. 1913, A.F.G. Kerr
2923 (holotype: K [photo!]; isotypes: BM [×3].
55. Monoon xanthopetalum (Merr.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia xanthopetala Merr. in
J. Straits Branch Roy. Asiat. Soc. 85: 185. 1922 – Type:
[Malaysia], Sabah, Sandakan, Sep.–Dec. 1920, M. Ramos
1705 (holo t y pe: PNH †; lec tot ype: K, ba rco de K0 0 0691618,
designated by Turner, 2011: 80; isolectotypes: A [×2], BM,
BO, L, US).
56. Monoon zamboangaense (Mer r.) B. Xue & R.M.K. Saun-
ders, comb. nov. Polyalthia zamboangaensis Merr.
in Philipp. J. Sci., C 10: 245. 1915 Type: Philippines,
Mindanao, Zamboanga District, near Margosatubig, 11
May 1912, F.W. Foxworthy, A. Demesa & A. Villamil FB
13276 (holotype: PNH †; lectotype, designated here: US
[photo!], barcode US00098686).
New nomenclatural combinations in Polyalthia. —
Cla de
III consists of all sampled species of Haplostichanthus and
21 species of Polyalthia, including the type species of both gen-
era (Fig. 2). Since the name Polyalthia (Blume, 1830) has prior-
ity over Haplostichanthus (von Müller, 1891) we here transfer
all species in the latter genus to Polyalthia. This requires nine
nomenclatural changes, including six new combinations and
three replacement names.
Polyalthia Blume, Fl. Javae 28–29: 68. 1830 – Ty p e : Polyal-
thia subcordata (Blume) Blume, designated by Hutchinson
(1923).
= Haplostichanthus F. Muell. in Vict. Naturalist 7: 180. 1891
Ty p e: Haplostichanthus johnsonii F. Muell.
= Papualthia Diels in Bot. Jahrb. Syst. 49: 138. 1912 Ty p e :
Papualthia pilosa Diels [= Haplostichanthus longirostris
(Scheff.) Heusden], designated by Fries (1959: 97).
Small treelets to large trees. Leaves glabrous or hairy, base
cuneate, obtuse, rounded or cordate (sometimes auriculate or
acute), usually asymmetrical, apex (tapering to) acute, acumi-
nate or caudate (rarely obtuse or rounded); midrib immersed
above, prominent beneath, smooth; secondary veins straight or
recurved, anastomosing distinctly at least 3–5 mm from mar-
gin; insertion on midrib not decurrent; tertiary veins reticulate
to wea k ly per curre nt. In f lores cen ces ax illa r y or ext r a-a x illa r y,
ramif lorous or cauliflorous, single- to several-f lowered. Sepals
3, valvate. Petals 6 in 2 whorls, valvate, often erect (inner),
variously shaped and variously coloured. Stamens numerous;
connectives truncate. Ovaries numerous; ovules 2– 6, lateral,
uniseriate. Monocarps subglobose, shortly cylindrical, ellip-
soid, oblong or ovoid, 0.5–5 cm long, subsessile to stipitate, to
3 cm long. Seeds 1–5 per monocarp, with at most one dimen-
sion >1 cm, ovoid, discoid or plano-convex, rugose or smooth,
with a longitudinal circumferential groove; endosperm spini-
form (rarely lamelliform), glass-like.
1. Polyalthia fruticosa (Jessu p) B. Xue & R.M.K. Saunders,
comb. nov. Haplostichanthus fruticosus Jessup, Fl.
Australia 2: 41, 449, fig. 9A–D. 2007 Type: Australia,
Queensland, Williams Spring, 22.4 km NE of Bamaga, 17
Feb. 1994, D.G. Fell, J.P. Stanton & C. Roberts DGF3784
(holotype: BRI).
2. Polyalthia hispida B. Xue & R.M.K. Saun ders , nom. nov.
Haplostichanthus rufescens Jessup, Fl . Aus t ralia 2: 41–42,
449, fig. 9Q–S. 2007 Type: Australia, Queensland, N
Johnstone River, Palmerston National Park, Crawford’s
Lookout to Tchupalla Falls Track, 15 Feb. 1982, L .W. J es su p
& J.G. Tracey 471 (holotype: BRI).
The combination Polyalthia rufescens is al read y occ upied
(P. rufesce ns Hook. f. & Thomson), and a new name is therefore
proposed. The new specific epithet describes the hispid leaves,
flowers and fruits.
3. Polyalthia johnsonii ( F. Muel l.) B. Xue & R.M.K. Saunders,
comb. nov. Haplostichanthus johnsonii F. Muell. in Vict.
Naturalist 7: 180. 1891 – Type: Australia, Queensland, Mt
Bartle Frere, 1891, S. Johnson s.n. (holotype: MEL; iso-
types: BRI, K, NSW).
4. Polyalthia longirostris (S cheff.) B. Xue & R.M.K. Saund ers,
comb. nov. Goniothalamus longirostris Scheff. in Ann.
Jard. Bot. Buitenzorg 1: 4–5. 1876 ≡ Papualthia longirostris
(Scheff.) Diels in Bot . Jah rb. Syst. 49: 140, fig. 1G–H. 1912
Haplostichanthus longirostris (Scheff.) Heus den in
Blumea 39: 228–231, figs. 1c–d, 5. 1994 – Type: [Indone-
sia], West New Guinea, date unknown, J.E. Teijsmann s.n.
(holotype: BO).
= Melodorum micranthum Warb. in Bot. Jahrb. Syst. 18: 190
191. 1893. (Synonymy fide Van Heusden, 1994: 228)
= Cyathostemma grandifolium Lauterb. & K. Schum. in
1035
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1035Version of Record (identical to print version).
Schu m ann & Lauter bach, Fl. Schutz geb. Südse e: 318. 1901
Papualthia grandifolia (Lauterb. & K. Schum.) Diels
in Bot. Jahrb. Syst. 49: 139. 1912. (Synonymy fide Van
Heusden, 1994: 228)
= Goniothalamus inaequilatera Lauterb. & K. Schum. in
Schu m ann & Lauter bac h, Fl . Schut zge b.ds ee: 322–323.
1901. (Synonymy fide Van Heusden, 1994: 228)
=
Goniothalamus auriculatus Burck in Nova Guinea 8: 432. 1911
Papualthia auriculata (Burck) Diels in Bot. Jahrb. Syst.
49: 139. 1912. (Synonymy fide Van Heusden, 1994: 229)
= Papualthia pilosa Diels in Bot. Jahrb. Syst. 49: 141–142, fig.
1A–F. 1912. (Synonymy fide Van Heusden, 1994: 229)
= Papualthia roemeri Diels in Bot. Jahrb. Syst. 49: 141. 1912.
(Synonymy fide Van Heusden, 1994: 229)
= Papualthia rudolphi Diels in Bot. Jahrb. Syst. 49: 139–140.
1912. (Synonymy fide Van Heusden, 1994: 229)
= Papualthia micrantha Diel s in Bot. Ja h rb. Syst. 52: 182–183.
1915. Synonymy fide Van Heusden, 1994: 229)
5. Polyalthia luzonensis B. Xue & R.M.K. Saunders, nom. nov.
Papualthia heteropetala Merr. in Philipp. J. Sci. 14: 389.
1919 ≡ Haplostichanthus heteropetala (Mer r.) He u s den in
Blumea 39: 224, fig. 3. 1994 – Type: Philippines, Luzon,
Ilocos Norte Province, Burgos, 26 Jul. 1918, M. Ramos BS
32853 (holotype: PNH †; lectotype: K, designated by Van
Heusden, 1994: 224).
The combination Polyalthia heteropetala is already oc-
cupied (P. heteropetala (Diels) Ghesq.), and a new name is
therefore proposed. The new specific epithet ref lects the dis-
tribution of this species in Luzon, Philippines.
6. Polyalthia novoguineensis (H. Okada) B. Xue & R.M.K
Saunders, comb. nov. Haplostichanthus novoguineensis
H. Okada in Acta Phytotax. Geobot. 47: 6–8, figs. 1D,
5. 1996 Type: Papua New Guinea, Morobe, Oomisis
near Lae, Gabensis Logging Area, ca. 150 m alt., 15 Aug.
1985, H. Okada & P. Katik 4202 (holot y p e: KYO; isot y p es:
BRI, K [photo!], LAE, TI).
7. Polyalthia stellata (Heusden) B. Xue & R.M.K. Saunders,
comb. nov. Haplostichanthus stellatus Heusden in
Blumea 39: 231–232, figs. 4, 6. 1994 – Type: Papua New
Guinea, West New Britain, Kombe Subdistrict, near Linga
Linga, alt. 500 m, 29 May 1973, E.E. Henty & Y. Lelean
NGF 49486 (holotype: LAE; isotype: L!).
8. Polyalthia submontana (Jes sup) B. Xue & R.M .K. Saunders,
comb. nov. Haplostichanthus submontanus Jessup, Fl.
Australia 2: 42–43, 449, fig. 9E–G. 2007 – Type: Australia,
Queensland, Catchment of Gap Creek NE of Mt Finnigan,
30 Nov. 1984, L.W. Jessup 632 (holotype: BRI).
9. Polyalthia xanthocarpa B. Xue & R.M.K. Saunders, nom.
nov. Haplostichanthus ramiflorus Jessup, Fl. Australia
2: 42, 449, fig. 9M–P. 2007 – Type: Australia, Queensland,
NW of Cape Tribulation, ‘Pilgrim Sands’, 29 Nov. 1984,
L.W. Jessup 610 (holotype: BRI; isotypes: K, L, U).
The combination Polyalthia ramiflora is al r eady occu pied
(P. ramiflora Merr.), and a new name is therefore proposed. The
new specific epithet describes the yellow fruits.
Incertae sedis. —
It has not been possible to assign the
following 13 species names to specific clades due to inadequate
protologue descriptions and illustrations. Decisions regarding
their placement must therefore await a detailed species-level
taxonomic research involving examination of type material,
which is beyond the scope of the present study.
1. Guatteria incerta Blume, Fl. Javae 30–31: 100, fig. 49. 1830
Monoon incertum (Blume) Miq. in Ann. Mus. Bot. Lug-
duno-Batavi 2: 19. 1865.
2. Monoon oligocarpum Miq. in Ann. Mus. Bot. Lugduno-
Batavi 2: 18. 1865.
3. Monoon sublanceolatum Miq. in Ann. Mus. Bot. Lugduno-
Batavi 2: 16. 1865 ≡ Polyalthia sublanceolata (Miq.) Merr.
in J. Straits Branch Roy. Asiat. Soc.: Spec. No. 257. 1921.
4. Monoon submitratum Miq. in Ann. Mus. Bot. Lugduno-
Batavi 2: 16. 1865 ≡ Polyalthia submitrata (Miq.) Ridl. in
Sarawak Mus. J. 1: 82. 1913. — Possibly allied to Sphaero-
coryne Scheff. ex Ridl. (I.M. Turner, pers. comm.).
5. Polyalthia amicorum A.C. Sm. in Bull. Bernice P. Bishop
Mus. 220: 113. 1959. — Possibly allied to Meiogyne.
6. Polyalthia amygdalina (A. Gray) Gillespie in Bull. Bernice
P. Bishop Mus. 83: 4. 1931. — Possibly allied to Meiogyne.
7. Polyalthia angustifolia A.C. Sm. in Bull. Torrey Bot. Club
70: 538. 1943. — Possibly allied to Goniothalamus.
8. Polyalthia florulenta C.Y. Wu ex P.T. Li in Acta Phytotax.
Sin. 14: 107–108, fig. 3. 1976. — Fruit and f lower char-
acteristics resemble those of Marsypopetalum littorale
(Blume) B. Xue & R.M.K. Saunders, although the leaf
venation is different.
9. Polyalthia habrotricha A.C. Sm. in J. Arnold Arbor. 31(2):
157–158. 1950. — Possibly allied to Meiogyne.
10.
Polyalthia laddiana A.C. Sm. in Bull. Ber nice P. Bishop Mus.
141: 60–61, fig. 28. 1936. — Possibly allied to Meiogyne.
11. Polyalthia litseifolia C.Y. Wu ex P.T. Li in Acta Phytotax.
Sin. 14: 110. 1976. The pattern of leaf venation re-
sembles that of Monoon, alt hough Li & Gilb er t (2011: 692)
refer to three ovules per carpel. This name may refer to
Popowia.
12. Polyalthia pingpienensis P.T. Li in Acta Phytotax. Sin. 14:
110. 1976. — Li (1976) suggests a similarity with Poly-
althia petelotii Merr. Rainer & Chatrou (2006) suggest
1036
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1036 Version of Record (identical to print version).
Airy-Shaw, H.K. 1939. Additions to the f lora of Borneo and other
Ma lay island s: XI I. The An non ace ae of the Ox for d Un ive rsity Ex-
pedition to Sarawak, 1932. Bull. Misc. Inform. Kew 1939: 275 –2 90.
Bân, N.T. 1975. A new genus of the A nnonaceae Juss.— Enicosanthel-
lum Bân. Bot. Zhurn. (Moscow & Leningrad) 60: 808–812. [In
Russia n]
Bân, N.T. 200 0. An n on a cea e. Pp. 5–341 in: Bâ n , N.T., Ly, T.D., Kha n h,
T.C., Loc, P.K., Thin, N.N., Tien, N.V. & Khoi, N.K. (eds.), Flora
of Vietnam, vol. 1. Hanoi: Science & Technics Publishing House.
[In Vietnamese]
Beccari, O. 1871. Illustrazione di nuove o rare species di piante bor n-
ensi. Nuovo Giorn. Bot. Ital. 3: 177–193, pl. 2–7.
Bentham, G. & Hooker, J.D. 1867. Genera plantarum, vol. 1. London:
Reeve.
Blume, C.L . 1830. Flora Javae, vol. 2. [Anonaceae]. Brussels: Frank.
Brown, J.M., Hedtke, S.M., Lemmon, A.R. & Lemmon, E.M. 2010.
Whe n tre e s gro w too lon g: Inve sti ga t ing the ca use s of highl y ina c -
curate Bayesian branch-length estimates. Syst. Biol. 59: 145–161.
Chaowasku, T., Keßler, P.J.A., Punnadee, S. & Van der Ham, R.
2011. Taxonomic novelties and pollen morphological study in the
genus Neo- uvaria (Annonaceae). Phytotaxa 32: 27–42.
Chatrou, L.W., Pirie, M.D., Erkens, R.H.J., Couvreur, T.L.P.,
Neubig, K.M., Abbott, J.R., Mols, J.B., Maas, J.W., Saunders,
R.M.K. & Chase, M.W. 2012. A new subfamilial and tribal clas-
sification of the pantropical flowering plant family Annonaceae
informed by molecular phylogenetics. Bot. J. Linn. Soc. 169: 5– 40.
that this name may represent Disepalum plagioneurum
(Diels) D.M. Johnson, although the name is not evaluated
by Johnson (1989).
13. Polyalthia verrucipes C.Y. Wu ex P.T. Li in Act a Phytotax.
Sin. 14: 110. 1976. — The leaf venation resembles that
of “true” Polyalthia, although the leaf base is acute and
symmetrical.
ACKNOWLEDGEMENTS
Financial support was provided by a g rant f rom the Hong Kong
Research Grants Council (HKU 775009M), awarded to RMKS. We
are grateful to: the directors and curators of A, IBSC, KEP, L, NY and
SI NG he rba r ia for lo an of (or acc e ss to) thei r col lec t io ns and /o r for pro-
viding leaf samples for DNA extraction; Piya Chalermglin,
Andrew
Ford, Achala Attanayake and
Garry San kowsky for collecting plant
material; Tang Chin Cheu ng for providing sequences of Polyalthia
lateritia; Car en Pearl Sh in and Vatsa la Mi rna ali ni for dr aw ing Fig. 3;
Piya Chalermglin and Tang Chin Cheung for permission to use their
photographs;
V
enera Fonjallaz (G),
Brian Franzone (A),
L. Gautier
(G),
Agathe Gautschi (G),
Ende Liu (KUN),
Egildo Luccioli (FI),
Chiara Nepi (FI),
Laura Pearce (K), Melinda Peters (A),
Nicolien
Sol (NH N),
Gerard
Thijsse (L), Ian Turner (K), Tim Utteridge (K),
Zhi-Rong Yang (PE), Dianxiang Zhang (IBSC),
Xian-chun Zhang (PE)
and
Feiyan Zeng (IBSC) for providing photographs of type mater ial
and/or photocopies of impor tant references; Mark Harring ton (CNS)
for information on the taxonomic placement of Australian species;
Ian Turner, Michael Pirie and an anonymous reviewer for their con-
structive comments; and Laura Wong for general technical assist ance.
LITERATURE CITED
Couvreur, T.L.P., Pirie, M.D., Chatrou, L.W., Saunders, R.M.K.,
Su, Y.C.F., Richardson, J.E. & Erkens, R.H.J. 2011. Early evo-
lutionar y history of the flowering plant family Annonaceae: Steady
diversification and boreotropical geodispersal. J. Biogeogr. 38:
664–680.
Diels, L. 1912. Beiträge zur Flora von Papuasien. Serie I. 8. Die Anona-
ceen von Papuasien. Bot. Jahrb. Syst. 49: 113–167.
Doyle, J.A. & Le Thomas, A. 199 4. Cladi sti c ana lys is an d polle n evol u-
tion in Annonaceae. Acta Bot. Gallica 141: 149–170.
Doyle, J.A. & Le Thomas, A. 199 6. Phy lo gen et i c ana ly sis and ch ara c ter
evolution in Annonaceae. Bull. Mus. Natl Hist. Nat., B, Adansonia
18: 279–334.
Doyle, J.A., Bygrave, P. & Le Thomas, A. 2000. Impl icat ions of mo-
lecular data for pollen evolution in Annonaceae. Pp. 259–284 in:
Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and
spores: Morphology and biology. Lo ndo n: Roy al Botan ic Ga r den s,
Ke w.
Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for
small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.
Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A.,
Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Sturrock , S.,
Thierer, T. & Wilson, A. 2 010. Ge ne iou s, vers io n 5.1. ht tp://w w w.
geneious.com/.
Erkens, R.H.J., Cross, H., Maas, J.W., Hoenselaar, K. & Chatrou,
L.W. 2008. Assessment of age and greenness of herbarium speci-
mens as predictors for successful extraction and amplification of
DNA. Blumea 53: 407–428.
Fries, R.E. 1959. Annonaceae. Pp. 1–171 in: Melchior, H. (ed.), Die
natürlichen Pflanzenfamilien, vol. 17a II. Berlin: Duncker & Hum-
blot.
Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment
editor and analysis program for Windows 95/98/NT. Nucl. Acids
Symp. Ser. 41: 95–98.
Hickey, L.J. 1979. A revised classif ication of the architecture of di-
co tyled ono us le aves . Pp. 25–39 in: Me tca lfe, C. & Chal k , L. (ed s.),
Anatomy of the dicotyledons, 2nd ed., vol. 1, Systematic anatomy
of the leaf and stem. Oxford: Clarendon Press.
Hickey, L.J. & Wolfe, J.A. 1975. The bases of angiosperm phylogeny:
Vegetative morphology. Ann. Missouri Bot. Gard. 62: 538–589.
Hooker, J.D. & Thomson, T. 1872. Anonaceae. Pp. 45–94. in: Hooker,
J.D. (ed.), The flora of British India, vol. 1. Ashford, Kent: Reeve.
Huber, H. 1985. Annonaceae. Pp. 1–75 in: Dassanayake, M.D. (ed), A
revised handbook to the Flora of Ceylon. New Delhi: Amerind.
Huelsenbeck, J.P. & Ronquist, F. 2001. Mr BAY ES: Ba ye sia n infe re n ce
of phylogenetic trees. Bioinformatics 17: 754 –755.
Hutchinson, J. 1923. Contributions towards a phylogenetic system of
flowering plants, 2. The genera of A nnonaceae. Bull. Misc. Inform.
Kew 7: 241–261.
Jessup, L.W. 2007. A nnonaceae. Pp. 18–57 in: Wilson, A.J.G. (ed.),
Flora of Australia, vol. 2. Canberra: CSIRO.
Johnson, D.M. 1989. Revision of Disepalum (Annonaceae). Brittonia
41: 356–378.
Johnson, D.M. & Murray, N.A. 1999. Four new species of Polyalthia
(Annonaceae) from Borneo and their relationship to Polyalthia
insignis. Contr. Univ. Michigan Herb. 22: 95–104.
Jovet-Ast, S. 19 42 . Rec he r ch es su r les An nonac ées d’I ndo chi n e. An ato -
mie foliare—répartition géographique. Mém. Mus. Natl. Hist. Nat.
16: 125–308.
Kass, R.E. & Raftery, A.E . 1995. Bayes factors. J. Amer. Statist. Assoc.
90: 773–795.
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. 2002. MAFFT: A
novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucl. Acids Res. 30: 3059–3066.
King, G. 1892. Materials for a Flora of the Malay Peninsula. No. 4.
J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 61: 1–130.
King, G. 1893. The Annonaceae of British India. Ann. Roy. Bot. Gard.,
Calcutta 4: 1–169, pl. 161–220.
1037
Xue & al. • Pruning Polyalthia and resurrect ing Monoon
TAX ON
61 (5) • October 2012: 1021–1039
1037Version of Record (identical to print version).
Klucking, E.P. 1986. Leaf venation patterns, vol. 1. Berlin & Stuttgart:
Cra me r.
Li, P.T. 1976. Some notes on the Annonaceae of China. Acta Phytotax.
Sin. 14: 96–113.
Li, P.T. & Gilbert, M.G. 2011. Annonaceae. Pp. 672–713 in: Wu, Z.Y.,
Raven, P.H. & Hong, D.Y. (eds.), Flora of China, vol. 19. Beijing:
Science Press.
Marshall, D.C. 2010. Cryptic failure of partitioned Bayesian phylo-
genetic analyses: Lost in the land of long trees. Syst. Biol. 59:
108–117.
Merril l, E.D. 1915. Studies on Philippine Annonaceae, I. Philipp. J.
Sci., C 10: 227–264.
Metcalfe, C.R. 198 7. Anatomy of the dicotyledons, 2nd ed., vol. 3. Ox-
ford: Clarendon Press.
Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES
Science Gateway for inference of large phylogenetic t rees. Pp.
45–52 in: Gateway Computing Environments Workshop (GCE
2010), New Oreleans, Lousiana, U.S.A., 14 Nov. 2010. New Or-
leans: IEEE.
Miquel, F.A.W. 1865. Annonaceae archipelagi Indici. Ann. Mus. Bot.
Lugduno-Batavi 2: 1–45, pl. 1–2.
Moeljono, S. 200 9. A taxonomic revision of the genus Popowia
Endlicher (Annonaceae) in Malesia. Thesis, Bogor Agricultural
University, Bogor, Indonesia. http://repositor y.ipb.ac.id/handle/
123456789/40 676.
Mols, J.B. & Keßler, P. J.A. 2000. Revision of the genus Phaeanthus
(Annonaceae). Blumea 45: 205–233.
Mols, J.B. & Keßler, P. J.A. 2003. The genus Miliusa (Annona cea e) in
the austro-Malesian area. Blumea 48: 421–462.
Mols, J.B., Co, D.L.V., Gravendeel, B., Chatrou, L.W., Pirie, M.D.,
Van der Ham, R.W. J.M., Van Marle, E.J. & Keßler, P.J.A.
2004a. Morphological character evolution in the miliusoid clade
(Annonaceae). Pp. 37–75 in: Mols, J.B. (ed.), From Miliusa to Mili-
useae to miliusoid: Identifying clades in Asian Annonaceae. Le ide n:
Nationaal Herbarium Nederland, Universiteit Leiden branch.
Mols, J.B., Gravendeel, B., Chatrou, L .W., Pirie, M.D., Bygrave,
P.C., Chase, M.W. & Keßler, P.J.A. 2004b. Identifying clades
in Asian An nonaceae: Monophyletic genera in the polyphyletic
Miliuseae. Amer. J. Bot. 91: 590–600.
Mols, J.B., Keßler, P. J.A., Rogstad, S.H. & Saunders, R.M.K. 2008.
Reassignment of six Polyalthia species to the new genus Maasia
(Annonaceae): Molecular and morphological congruence. Syst.
Bot. 33: 490–494.
Müller, F.J.H. von 1891. Descriptions of new Australian plants with
occasional other annotations. Vict. Naturalist 7: 180–184.
Müller, K. 2005. The efficiency of different search strategies in estimat-
ing parsimony jackknife, bootstrap, and Bremer support. B. M. C.
Evol. Biol. 5: 58, doi: 10.1186/1471-2148-5-58.
Newton, M.A. & Raftery, A.E. 1994. Approximate Bayesian infer-
ence with the weighted likelihood bootst rap. J. Roy. Statist. Soc.,
Ser. B 56: 3–48.
Nylander, J.A.A. 2004. MrM odelt est , ver si on 2. Upp sal a: Evolu tio nar y
Biology Centre, Uppsala University. http://www.abc.se/~nylander/
mrmodeltest2/mrmodeltest2.html.
Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey,
J.L. 2004. Bayesian phylogenetic analysis of combined data. Syst.
Biol. 53: 47–67.
Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swofford,
D.L. 2008. AWTY (Are we there yet?): A system for graphical
exploration of MCMC convergence in Bayesian phylogenetics.
Bioinformatics 24: 581–583.
O’Brien, T.P. & McCully, M.E. 1981. The study of plant structure:
Principles and selected methods. Melbourne: Termarcarphi.
Parker, A.J., Hask ins, E.F. & Deyrup-Olsen, I. 1982. Toluidine blue:
A simple, effective stain for plant tissues. Amer. Biol. Teacher 44:
487–489.
Rainer, H. & Chatrou, L.W. 2006. AnnonBase: World species list of
Annonaceae, version 1.1. http://www.sp2000.org and http://www
.annonaceae.org.
Rambaut, A. 1996. Se-Al: Sequence alignment editor, version 2.0.
http://tr ee.bio.ed.ac.uk /soft wa re/seal/.
Rambaut, A. & Drummond, A.J. 2009. Tracer, version 1.5. http://
beast.bio.ed.ac.uk/Tracer.
Rauschert, S. 1982. Nomina nova generica et combinationes novae
Spermatophytorum et Pteridophytorum. Ta x on 31: 554–563.
Rogstad, S.H. 1989. The bios yst ema tic s and evolution of the Polyalthia
hypoleuca complex (Annonaceae) of Malesia. I. Systematic treat-
ment. J. Arnold Arbor. 70: 153–246.
Rogstad, S.H. 1990. The biosystematics and evolution of the Polyalthia
hypoleuca sp e cies co mplex (An non ace a e) of Mal esi a. II . Co mpa r a-
tive distributional ecology. J. Trop. Ecol. 6: 387–408.
Rogstad, S.H. 1994. The biosystematics and evolution of the Polyalthia
hypoleuca species complex (Annonaceae) of Malesia. III. Floral
ontogeny and breeding systems. Amer. J. Bot. 81: 145–154.
Rogstad, S.H. & Le Thomas, A. 1989. Pollen characters of the Poly-
althia hypoleuca complex (Annonaceae): Their significance in
establishing monophyly and candidate outgroups. Bull. Mus. Natl.
Hist. Nat., B, Adansonia 11: 257–278.
Ronquist, F. & Huelsenbeck, J.P. 200 3. MrBaye s 3: Ba ye sia n phyloge -
netic inference under mixed models. Bioinformatics 19: 1572 –1574.
Ruzin, S.E. 1999. Plant microtechnique and microscopy. Oxford: Ox-
ford University Press.
Saunders, R .M.K. & Xue, B. 2011. (199 2) Pro pos al to con ser ve the name
Enicosanthum against Monoon (Annonaceae). Tax on 60: 236–237.
Saunders, R.M.K., Su, Y.C.F. & Xue, B. 2011. Phylogenetic affinities
of Polyalthia species (Annonaceae) with columellar-sulcate pol-
len: Enlarging the Madagascan endemic genus Fenerivia. Ta xon
60 : 14 0 7–1416.
Sinclair, J. 1951. Notes on Bornean Annonaceae. Sarawak Mus. J. 5:
597–609.
Sinclair, J. 1955. A revision of the Malayan Annonaceae. Gard. Bull.,
Singapore 14: 149–516.
Stamatak is, A. 2006. R AxML-VI-HPC: Maximum li kelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22: 2688–2690.
Su, Y.C.F., Smith, G.J.D. & Saunders, R.M.K. 2008. Phylogeny of the
basal angiosperm genus Pseuduvaria (Annonaceae) inferred from
five chloroplast DNA regions, with interpretation of morphological
character evolution. Molec. Phylogen. Evol. 48: 188–206.
Suchard, M.A., Weiss, R.E. & Sinsheimer, J.S. 2 001. Ba ye sia n selec -
tion of continuous-time Markov chain evolutionary models. Molec.
Biol. Evol. 18: 1001–1013.
Surveswaran, S., Wang, R. J., Su, Y.C.F. & Saunders, R.M.K. 2 010.
Generic delimitation and historical biogeography in the early-di-
vergent ‘ambavioid’ lineage of Annonaceae: Cananga, Cyathoca-
lyx and Drepananthus. Tax o n 59: 1721–1734.
Swofford, D.L. 2003. PAUP*: Phylogenetic analysis using parsimony
(* and other methods), version 4.0b10. Sunderland, Massachusetts:
Sinauer.
Thomas, D.C., Surveswaran, S., Xue, B., Sankowsky, G., Mols, J.B.,
Keßler, P.J.A. & Saunders, R.M.K. 2012. Molecular phyloge-
netics and historical biogeography of the Meiogyne-Fitzalania
clad e (An non ace ae): Gene ric para phyly and late Mioc ene -Pl io cen e
diversification in Australasia and the Pacific. Ta x on 61: 559–575.
Turner, I.M. 2010. A consideration of Cleistopetalum and a new com-
bination in Polyalthia (Annonaceae). Phytotaxa 8: 41–45.
Turner, I. M. 2011. A catalogue of the Annonaceae of Borneo. Phy-
totaxa 36: 1–120.
Turner, I.M. 2012. The plant taxa of H.N. Ridley, 4. The primitive an-
giosperms (Austrobaileyales, Canellales, Chloranthales, Laurales,
Magnoliales, Nymphaeales and Piperales). Gard. Bull., Singapore
64: 221–256.
Van Heusden, E.C.H. 1994. Revision of Haplostichanthus (Ann ona-
ce ae). Blumea 39: 215–234.
1038
TAX ON
61 (5) • October 2012: 1021–1039Xue & al. • Pruning Polyalthia and resurrect ing Monoon
1038 Version of Record (identical to print version).
Van Setten, A.K. & Koek-Noorman, J. 1986. Studies in Annonaceae
VI : A le af ana tom ic al su r vey of ge ner a of An non a ce a e in th e Neo -
tropics. Bot. Jahrb. Syst. 108: 17–50.
Van Setten, A.K. & Koek-Noorman, J. 1992. Fruits and seeds of
Annonaceae: Morphology and its significance for classification.
Biblioth. Bot. 142: 1–101.
Verdcourt, B. 1969. The status of the genus Polyalthia Blu me (An -
nonaceae) in Africa. Adansonia, sér. 2, 9: 87–94.
Xue, B., Su, Y.C.F., Mols, J.B., Keßler, P.J.A. & Saunders, R.M.K.
2011. Further fragmentation of the polyphyletic genus Polyalthia
(Annonaceae): Molecular phylogenetic support for a broader de-
limitation of Marsypopetalum. Syst. Biodivers. 9: 17–26.
Appendix 1.
Voucher informat ion and GenBank accession numbers for samples used in this study (* newly sequenced data).
Species, or igin, voucher, GenBan k number (in following order: matK, rbcL, trnL-F)
Alphonsea boniana Fin et & Gagn e p.: Vie t na m, P.J.A. Keßler 3116 ( L), AY51880 9, AY31896 5, AY319077; Alphonsea kinabaluensis J. Si nc la i r: Malays ia , Ridsdale
DV-S-3048 (L), AY518811, AY3189 68 , AY319 08 0; Anaxagorea silvatica R.E . Fr.: Braz il, P.J.M. Maa s & al. 8836 ( U), AY743477, AY743439, AY743458; Annickia
pilosa (Exel l) Set ten & Maa s: Gabo n, M.S.M. S osef 1803 ( WAG), AY743 48 8, AY743 450, AY7434 69; Bocageopsis multiflora (Mar t.) R.E. Fr.: Guy ana , M.J. Jans en-
Jacobs & al. 5789 (U), DQ018262, AY841600, AY841678; Cananga odorata (Lam.) Hook. f. & Thomson: Cost a Rica, L .W. Chatrou & al. 93 (U), AY841394,
AY8 4160 2 , AY 84168 0; Cleistopholis glauca Engl. & Diels: Gabon, J.J. Wieringa & al. 3278 (WAG), AY841395, AY841603, AY841681; Cremastosperma cauli-
florum R.E. Fr.: Peru, L.W. Chatrou & al. 224 (U ), AY74354 2, AY743519, AY743565; Cyathocalyx martabanicus Hook. f. & Thomson: cultivated, Kebu n Raya,
Bogor, J.B. Mols 11 (L), DQ125054, AY841605, AY841683; Cymbopetalum brasiliense (Vell.) Benth. ex Baill.: cultivated, Utrecht Universit y Botanic Garden,
L.W. Chatrou 471 (U), DQ125055, AY841608, AY841686; Dasymaschalon macrocalyx Finet & Ga gnep.: Thai land, P.J.A. Keßler 3199 (L), EF179277, AY841610,
AY841688; Desmopsis schippii Standl.: Costa Rica, L.W. Chatrou & al. 94 ( U), AY518805, AY319060, AY319174; Ephedr anthus sp.: Brazil, Maas & al. 8826
(U ), AY841 39 6, AY841616, AY8416 94; Fenerivia capuronii (Cavac o & Ke r au d re n) R.M.K . Sa u nd e rs : Ma d ag a sc a r, P.P. Lowr y II 4436 (WAG), JF810374, JF810386,
JF 81039 8; Fenerivia heteropetala Diels: Madagascar, G. Cours 2606 (P), JF810378, JF810390, JF810402; Fenerivia madagascariensis (Cavaco & Keraudren)
R.M.K. Saunders: Madagascar, J. Rabenantoandro & A. Monja 1590 (P), J F810380, JF810392, JF810404; Fitz alania heteropetala (F. Muell .) F. Muell.: Aus tralia ,
T.H. Kemp 7267 (L), AY773280, AY773281, AY773282; Goniothalamus tapis Miq.: Tha iland, P.J.A. Keßler 3193 (L), DQ125058, AY841622, AY841700; Green-
wayodendron oliveri (Engl.) Verdc.: Ghana, C.C.H. Jongkind & al. 1795 (WAG), AY 7434 89, AY743451, AY743 470; Guatteria sellowiana Schltdl.: Brazil, A.Q.
Lobão 557 (U), AY740954, AY741003, AY741052; Klarobelia inundata Chatrou: Peru, L.W. Chatrou & al. 205 ( U), AY743490, AY743452 , AY743471; Maasia
discolor (Diels) Mols & al.: New Gui nea, W. Takeuchi & D. Ama 16394 (L), AY518872, AY319021, AY319135; Maasia glauca (Hassk.) Mols & al.: cultivated,
Kebun Raya, Bogor [XX-D-81], J.B. Mols 20 (L), AY518871, AY319023, AY319137; Malmea dielsiana R.E. Fr.: Peru, L.W. Chatrou & al. 122 (U), AY238964,
AY238955, AY231288; Marsypopetalum littorale (Blume) B. Xue & R.M.K. Saunders: cultivated, Kebun Raya, Bogor [IV-H-53], Ras t ini 153 (L), AY518835,
AY319 026 , AY319140; Marsypopetalum crassum (R. Parker) B. Xue & R.M.K. Saunders: Thailand, P. Ch ale rmgli n 521212 -1 (HKU), HQ286571, HQ286577,
HQ28658 3; Marsypopetalum lucidum (Merr.) B. Xue & R.M.K. Saunders: Philippines, Kanehira 2606 ( NY), HQ286572, HQ286578, HQ286584; Marsypopeta-
lum pallidum (Blume) Kurz: T hailand, P.J.A. Keßler 3192 (L), AY518834, AY318980, AY319092; Marsypopetalum triste (Pierre) B. Xue & R.M.K. Saunders:
Vietnam, E. Poilane 19622 (N Y), HQ286573, HQ286579, HQ286585; Meiogyne stenopetala (F. Muell.) Heusden: Australia, L. Jessup 706 (K), AY773279,
AY318 97 1, AY319 083; Meiogyne virgata (Blu me) Miq.: Bor neo, P.J.A. Keßler 2751 (L), AY518798 , AY318982 , AY3190 94; Miliusa lineata (Craib) As t: Tha il an d,
P.J.A. Keßler 3202 (L), AY5188 4 8, AY318987, AY3190 99; Miliusa velutina (Dunal) Hook. f. & Thomson: Thailand, P. Pholsena 2842 (L), AY5188 47, AY3189 93 ,
AY319105; Mitrephora keithii Ridl.: Thailand, P.J.A. Keßler 3190 (L) & D.J. Middleton & al. 877 (L), AY5188 57, AY3189 95, AY31910 8; Mitrephora polypyrena
(Blume) Miq.: cultivated , Kebun Raya, Bogor, J.B. Mols 7 ( L), AY518858, AY3189 97, AY319110 ; Mkilua fragrans Verdc.: cultivated, Utrecht University Botanic
Garden, L.W. Chatrou 474 (U), DQ125060, AY841634, AY841712; Monanthotaxis whytei (Stapf ) Verdc.: cultivated , Utrecht University Botanic Garden, L .W.
Chatrou 475 (U), EF179278, AY841635, AY841713; Monocarpia euneura Miq.: Borneo, F. Slik 2931 (L), AY518865, AY318998, AY319111; Monoon australe
(Benth.) B. Xue & R.M.K. Saunders [= Polyalthia australis (Benth.) Jessup]: Australia, Queensland, A. Ford 4697 ( HKU ), J X227872, J X227897, JX227849;
Monoon borneense (H. Okada) B. Xue & R.M.K. Saunders [= Polyalthia sinclairiana I.M. Turner]: Singapore, Central Catchment Area, K.H. Ng YK2007-07
(SING), JX227873, JX227898, JX227850; Monoon cf. glabrum (Hook. f. & Thom son) B. Xue & R.M.K. Saunders [= Polyalthia cf. glabra J. Sinclair]: cultivated,
Kebun Raya, Bogor [IV-H-106], Rastini 224 (L), AY518782 , AY319 032, AY319146; Monoon coffeoides (Thwaites ex Hook. f. & Thomson) B. Xue & R.M.K. Saun-
ders [= Polyalthia coffeoides (Thwaites ex Hook. f. & Thomson) Hook. f. & Thomson]: Sr i Lanka, R.M.C.S. Ratnayake 1/03 (HKU), EU522233, EU522288,
EU522178 ; Monoon congestum (Ridl.) B. Xue & R.M.K. Saunders [= Polyalthia congesta (Ridl.) J. Sinclair]: Borneo, C. E. Ridsdale DV-S-5105 (L), AY518790,
AY319019, AY319133; Monoon cupulare (Kin g) B. Xue & R. M. K. Saun der s [= Enicosanthum cupulare (King) Airy Shaw]: Thailand, Narathiwat, P. Sangkhachand
464 (L), JX227874, JX227899, –; Monoon erianthoides (Air y Shaw) B. Xue & R.M.K. Saunders [= Enicosanthum erianthoides Airy Shaw]: Malaysia, Sabah,
Madani Leopold 35041 (L), JX227875, JX227900, JX227851; Monoon fuscum (King) B. Xue & R.M.K. Saunders [= Enicosanthum fuscum (King) Airy Shaw]:
Thailand, P.J. A. Keßle r 3222 (L), AY518787, AY318973, AY319085; Monoon hypogaeum (King) B. Xue & R.M.K. Saunders [= Polyalthia hypogaea Ki ng]:
Malaysia, Pera k, Wia rt 78832 (KEP), JX227876, JX2279 01, JX227852; Monoon kingii (Baker) B. Xue & R.M.K. Saunder s [= Polyalthia k ingii Baker f.]: Indone -
sia, Sumatra, J.S. Burley & al. 1333 ( NY), JX227877, JX227902, JX227853; Monoon klemmei (Elmer) B. Xue & R.M.K. Saunders [= Enicosanthum klemmei
(Elmer) Air y Shaw]: Philippines, Palawan, A.D.E. Elmer 12644 (L), JX227878, JX227903, J X227854; Monoon laterif lorum (Blume) B. Xue & R.M.K. Saun der s
[= Polyalthia laterif lora ( Blume) Ki ng]: cultivated, Kebun Raya, Bogor [XII-B-VII-37) (L), AY518781, AY319024, AY319138; Monoon laui (Merr.) B. Xue &
R.M.K. Saunders [= Polyalthia laui Mer r.]: China, Hainan, Zhe xian Li 4208 (IBSC), JX227879, JX227904, J X227855; Monoon longifolium (Sonn.) B. Xue &
R.M.K. Saunders [= Polyalthia longifolia (Sonn.) Thwaites]: Sri Lanka, R.M.C.S. Ratnayake 3/04 (HKU), EU522235, EU522290, EU522180; Monoon membra-