Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali

Emerging Themes in Epidemiology (Impact Factor: 2.59). 10/2012; 9(1):6. DOI: 10.1186/1742-7622-9-6
Source: PubMed


Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required.

We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A.

VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans.

Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

Download full-text


Available from: Margarita Riera-Montes
    • "Sometimes a simple random sample is not available—for example, geographic spread may make a simple random sample infeasible [7-9]— and one must resort to other sampling designs. One such instance is the data quality assessment of the community health worker (CHW) program in southern Kayonza, Rwanda. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications.To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.
    No preview · Article · Oct 2013 · Emerging Themes in Epidemiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implementation of trachoma control strategies requires reliable district-level estimates of trachomatous inflammation–follicular (TF), generally collected using the recommended gold-standard cluster randomized surveys (CRS). Integrated Threshold Mapping (ITM) has been proposed as an integrated and cost-effective means of rapidly surveying trachoma in order to classify districts according to treatment thresholds. ITM differs from CRS in a number of important ways, including the use of a school-based sampling platform for children aged 1–9 and a different age distribution of participants. This study uses computerised sampling simulations to compare the performance of these survey designs and evaluate the impact of varying key parameters.
    Full-text · Article · Aug 2013 · PLoS Neglected Tropical Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives To assess the bias incurred when curtailment of Lot Quality Assurance Sampling (LQAS) is ignored, to present unbiased estimators, to consider the impact of cluster sampling by simulation and to apply our method to published polio immunization data from Nigeria. Methods We present estimators of coverage when using two kinds of curtailed LQAS strategies: semicurtailed and curtailed. We study the proposed estimators with independent and clustered data using three field-tested LQAS designs for assessing polio vaccination coverage, with samples of size 60 and decision rules of 9, 21 and 33, and compare them to biased maximum likelihood estimators. Lastly, we present estimates of polio vaccination coverage from previously published data in 20 local government authorities (LGAs) from five Nigerian states. ResultsSimulations illustrate substantial bias if one ignores the curtailed sampling design. Proposed estimators show no bias. Clustering does not affect the bias of these estimators. Across simulations, standard errors show signs of inflation as clustering increases. Neither sampling strategy nor LQAS design influences estimates of polio vaccination coverage in 20 Nigerian LGAs. When coverage is low, semicurtailed LQAS strategies considerably reduces the sample size required to make a decision. Curtailed LQAS designs further reduce the sample size when coverage is high. Conclusions Results presented dispel the misconception that curtailed LQAS data are unsuitable for estimation. These findings augment the utility of LQAS as a tool for monitoring vaccination efforts by demonstrating that unbiased estimation using curtailed designs is not only possible but these designs also reduce the sample size.
    Full-text · Article · Dec 2013 · Tropical Medicine & International Health
Show more