Rapidly quantifying drug sensitivity of dispersed and clumped breast cancer cells by mass profiling

Bioengineering Interdepartmental Program, Los Angeles, California, USA.
The Analyst (Impact Factor: 4.11). 10/2012; 137(23). DOI: 10.1039/c2an36058f
Source: PubMed


Live cell mass profiling is a promising new approach for rapidly quantifying responses to therapeutic agents through picogram-scale changes in cell mass over time. A significant barrier in mass profiling is the inability of existing methods to handle pleomorphic cellular clusters and clumps, which are more commonly present in patient-derived samples or tissue cultures than are isolated single cells. Here we demonstrate automated Live Cell Interferometry (LCI) as a rapid and accurate quantifier of the sensitivity of single cell and colony-forming human breast cancer cell lines to the HER2-directed monoclonal antibody, trastuzumab (Herceptin). The relative sensitivities of small samples (<500 cells) of four breast cancer cell lines were determined tens-to-hundreds of times faster than is possible with traditional proliferation assays. These LCI advances in clustered sample assessment and speed open up the possibility for therapeutic response testing of patient-derived solid tumor samples, which are viable only for short periods ex vivo and likely to be in the form of cell aggregates and clusters.

Download full-text


Available from: Thomas Zangle
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis. To eliminate the need for labeling, we introduce a label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously either as a stand-alone instrument or as an add-on to conventional flow cytometers. Cell protein concentration adds a parameter to cell classification, which improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. This system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second.
    Preview · Article · Sep 2013 · Biomedical Optics Express
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.
    No preview · Article · Feb 2014 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.
    No preview · Article · Nov 2014 · Nature Methods