Near Infrared Imaging of EGFR of Oral Squamous Cell Carcinoma in Mice Administered Arsenic Trioxide

Stomatology Department, Institute of Hard Tissue Development and Regeneration, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(9):e46255. DOI: 10.1371/journal.pone.0046255
Source: PubMed


The effectiveness of near-infrared imaging (NIR) interrogation of epidermal growth factor receptor (EGFR) expression as a sensitive biomarker of oral squamous cell carcinoma (OSCC) response to arsenic trioxide therapy was studied in mice.
A431 OSCC in vitro were exposed to 0 µM, 0.5 µM, 2.5 µM, or 5 µM of As(2)O(3) for 0 h, 24 h, 48 h and 72 h. Confocal microscopy and flow cytometry confirmed EGFR expression and demonstrated a sensitivity dose-related signal decline with As(2)O(3) treatment. Next, mice with pharynx-implanted A431 cells received As(2)O(3) i.p. every 48 h at 0.0, 0.5, 2.5, or 5 mg/kg/day (n = 6/group) from day 0 to 10. An intravenous NIR probe, EGF-Cy5.5, was injected at baseline and on days 4, 8, and 12 for dynamic NIR imaging. Tumor volume and body weights were measured three times weekly.
In vitro, A431 EGFR expression was well appreciated in the controls and decreased (p<0.05) with increasing As(2)O(3) dose and treatment duration. In vivo EGFR NIR tumor signal intensity decreased (p<0.05) in As(2)O(3) treated groups versus controls from days 4 to 12, consistent with increasing dosage. Tumor volume diminished in a dose-related manner while body weight was unaffected. Immunohistochemical staining of excised tumors confirmed that EGFR expression was reduced by As(2)O(3) treatment in a dose responsive pattern.
This study demonstrates for the first time that OSCC can be interrogated in vivo by NIR molecular imaging of the EGFR and that this biomarker is effective for the longitudinal assessment of OSCC response to As(2)O(3) treatment.

Download full-text


Available from: Peter Wang
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
    Full-text · Article · Mar 2014 · International Journal of Nanomedicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral squamous cell carcinoma (OSCC) accounts for the majority of oral cancers. Despite recent advances in OSCC diagnostics and therapeutics, the overall survival rate still remains low. Here, we assessed the efficacy of a combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment in human OSCC cells. The combinatorial effect of ATO/CDDP on the growth and apoptosis of OSCC cell lines HSC-2, HSC-3, and HSC-4 was evaluated using MTT and annexin V assays, respectively. Chou-Talalay analyses were preformed to evaluate the combinatorial effects of ATO/CDDP on the dose-reduction index (DRI). To clarify the mechanism underlying the ATO/CDDP anticancer effect, we also examined the involvement of reactive oxygen species (ROS) in ATO/CDDP-induced apoptosis. Combination index (CI) analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in HSC-2 cells, with CI values ranging from 0.78 to 0.90, where CI < 1 defines synergism. The CI values in HSC-3 and HSC-4 cells ranged from 0.34 to 0.45 and from 0.60 to 0.92, respectively. In addition, ATO/CDDP yielded favorable DRI values ranging from 1.6-fold to 7.71-fold dose reduction. Compared to mono-therapy, ATO/CDDP combinatorial therapy significantly augmented the loss of mitochondrial potential, caspase-3/7 activity and subsequent apoptosis. These changes were all abrogated by the antioxidant N-acetylcysteine. This study provides the first evidence for a synergistic ATO/CDDP anticancer (apoptotic) activity in OSCC cells with a favorable DRI, thereby highlighting its potential as a combinational therapeutic regime in OSCC.
    Full-text · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Purpose Mutations in the p53 gene are frequently observed in squamous cell carcinoma of the head and neck region (SCCHN) and have been associated with drug resistance. The potential of arsenic trioxide (ATO) for treatment of p53-deficient tumor cells and those with acquired resistance to cisplatin and cetuximab was determined. Material and Methods In a panel of 10 SCCHN cell lines expressing either wildtype p53, mutated p53 or which lacked p53 by deletion the interference of p53 deficiency with the growth-inhibitory and radiosensitizing potential of ATO was determined. The causal relationship between p53 deficiency and ATO sensitivity was evaluated by reconstitution of wildtype p53 in p53-deficient SCCHN cells. Interference of ATO treatment with cell cycle, DNA repair and apoptosis and its efficacy in cells with acquired resistance to cisplatin and cetuximab was evaluated. Results Functional rather than structural defects in the p53 gene predisposed tumor cells to increased sensitivity to ATO. Reconstitution of wt p53 in p53-deficient SCCHN cells rendered them less sensitive to ATO treatment. Combination of ATO with irradiation inhibited clonogenic growth in an additive manner. The inhibitory effect of ATO in p53-deficient tumor cells was mainly associated with DNA damage, G2/M arrest, upregulation of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors and apoptosis. Increased activity of ATO was observed in cetuximab-resistant SCCHN cells whereas cisplatin resistance was associated with cross-resistance to ATO. Conclusions Addition of ATO to treatment regimens for p53-deficient SCCHN and tumor recurrence after cetuximab-containing regimens might represent an attractive strategy in SCCHN.
    Full-text · Article · Jun 2014 · PLoS ONE
Show more