Distinct Licensing of IL-18 and IL-1β Secretion in Response to NLRP3 Inflammasome Activation

University of California Merced, United States of America
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(9):e45186. DOI: 10.1371/journal.pone.0045186
Source: PubMed


Inflammasome activation permits processing of interleukins (IL)-1β and 18 and elicits cell death (pyroptosis). Whether these responses are independently licensed or are "hard-wired" consequences of caspase-1 (casp1) activity has not been clear. Here, we show that that each of these responses is independently regulated following activation of NLRP3 inflammasomes by a "non-canonical" stimulus, the secreted Listeria monocytogenes (Lm) p60 protein. Primed murine dendritic cells (DCs) responded to p60 stimulation with reactive oxygen species (ROS) production and secretion of IL-1β and IL-18 but not pyroptosis. Inhibitors of ROS production inhibited secretion of IL-1β, but did not impair IL-18 secretion. Furthermore, DCs from caspase-11 (casp11)-deficient 129S6 mice failed to secrete IL-1β in response to p60 but were fully responsive for IL-18 secretion. These findings reveal that there are distinct licensing requirements for processing of IL-18 versus IL-1β by NLRP3 inflammasomes.

Full-text preview

Available from:
  • Source
    • "The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein complex that functions to activate caspase-1, leading to the proteolytic maturation and secretion of the proinflammatory cytokines interleukin (IL)-1β and IL-18. [10] Chemotherapeutics, such as doxorubicin, activate the NLRP3 inflammasome, and mice lacking components of the NLRP3 inflammasome fail to respond to chemotherapy unless exogenous IL-1β is provided [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1β levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophages.
    Full-text · Article · Apr 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Propionibacterium acnes is a Gram-positive, slow-growing, anaerobic bacillus, predominantly found as a commensal on the skin and mucous membranes of adults. It is, however, also considered an opportunistic pathogen; mostly associated with acne vulgaris, but rarely also with severe infections such as infective endocarditis, prosthetic joint infections, and deep sternal wound infections following cardiothoracic surgery. In addition, P. acnes has recently been found in high frequency in prostate tissue from patients with prostatitis and prostate cancer. The NOD-like receptors (NLR) act as intracellular sensors of microbial components, and a number of various bacteria have been found to induce assembling and activation of NLR-inflammasomes; leading to a pro-inflammatory response. The inflammasome-mediated formation of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 involves the auto-proteolytic maturation of caspase-1. This study investigated if P. acnes activates inflammasomes. Propionibacterium acnes isolates (n = 29) with diverse origin were used as stimuli for peripheral leukocytes obtained from blood donors (BDs). The activity of inflammasomes was determined by measuring caspase-1 by flow cytometry and cytokine production by ELISA. A significant amount of caspase-1 was found in neutrophils upon P. acnes stimulation, whereas only a modest activation was seen in monocytes. The activation was mainly produced by components of the bacterial cell and no exo-products, because heat-killed and live bacteria caused high activation of caspase-1 as well as cytokine production, whereas the bacterial supernatant elicited minor effect. The response among different BDs varied significantly, almost fivefold. In addition, P. acnes of various origins showed considerable variation, however, the commensal isolates showed a stronger response compared with the invasive. In conclusion, although regarded as a harmless commensal of the skin, P. acnes strongly activates the inflammasome of human peripheral neutrophils.
    No preview · Article · Dec 2012 · Apmis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of Fas (CD95/Apo-1)-mediated apoptosis are increasingly understood. However, the role of Fas-mediated production of proinflammatory cytokines such as IL-18 and IL-1β in bacterial infection is unclear. We demonstrate the importance of Fas-mediated signaling in IL-18/IL-1β production postinfection with Listeria monocytogenes without the contribution of caspase-1 inflammasome. IL-18/IL-1β production in L. monocytogenes-infected peritoneal exudate cells from Fas-deficient mice was lower than those from wild type mice, indicating that Fas signaling contributes to cytokine production. L. monocytogenes infection induced Fas ligand expression on NK cells, which stimulates Fas expressed on the infected macrophages, leading to the production of IL-18/IL-1β. This was independent of caspase-1, caspase-11, and nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) such as Nlrp3 and Nlrc4, but dependent on apoptosis-associated speck-like protein containing a caspase recruitment domain. Wild type cells exhibited caspase-8 activation, whereas Fas-deficient cells did not. L. monocytogenes-induced caspase-8 activation was abrogated by inhibitor for intracellular reactive oxygen species, N-acetyl-L-cysteine. L. monocytogenes-infected macrophages produced type-I IFNs such as IFN-β1, which was required for Il18 gene expression. Thus, Fas signaling regulates innate inflammatory cytokine production in L. monocytogenes infection.
    No preview · Article · Mar 2013 · The Journal of Immunology
Show more