Absorption coefficient and refractive index of GaN, AIN and AlGaN alloys

MRS Online Proceeding Library 12/1997; 537. DOI: 10.1557/PROC-537-G5.2


The design of optoelectronic devices fabricated from III-nitride materials is aided by knowledge of the refractive index and absorption coefficient of these materials. The optical properties of GaN, AIN and A1GaN grown by MOVPE on sapphire substrates were investigated by means of transmittance and reflectance measurements. Thin (less than 0.5 μm) single crystal films were employed to insure that transmission measurements could be obtained well above the optical band gap. The influence of alloy broadening on the absorption edge was investigated by using a series of AlGaN alloy samples with a range of Al compositions. The optical absorption coefficient above the band gap was obtained for AIGaN having up to 38% Al composition. The refractive index below the band gap was determined for the same series of samples. These properties provide information critical to the optimal design of solar blind detectors or other optoelectronic devices.

Download full-text


Available from: John Muth, May 07, 2015
  • Source
    • "Using transfer-matrix-approach (TMA) simulation [15], the center reflectivity of the Rb was calculated to be 87.1% at 330 nm with a stop bandwidth of 16.8 nm, and the center reflectivity of the Rf was 39.3%, both of which are basically in accordance with the test results of reflectance spectrum for 20-pair and 3-pair DBR samples. According to the relation of reflectivity and the thickness of absorption layer [1]), the total thickness of the GaN absorption layer must be set to 33.2 nm to get the maximum of QE, where is the thickness of the absorption layers and cm is the absorption coefficient of GaN at 330 nm [16]. However, for exact etching to the p-GaN layer, the absorption layer should be thicker, so here we designed it to be 80 nm (20 nm i-GaN and 60 nm p-GaN). "
    [Show abstract] [Hide abstract]
    ABSTRACT: AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al<sub>0.3</sub>Ga<sub>0.7</sub>N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al<sub>0.3</sub>Ga<sub>0.7</sub>N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al<sub>0.3</sub>Ga<sub>0.7</sub>N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0deg to 60deg.
    Full-text · Article · Jul 2009 · IEEE Journal of Quantum Electronics
  • Source
    • ". Measured quantum efficiency of GaN samples Fig. 4. Calculated 1/e attenuation depth for GaN on sapphire substrates, opaque mode, showing the [Muth et al 7 1999] and relative (1/e) -1 as a function of evolution of sample processing techniques on the QE. wavelength, showing the behavior at the band gap. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitride-III semiconductors, in particular GaN (band gap energy 3.5 eV), AlN (band gap 6.2 eV) and their alloys AlxGa1-xN are attractive as UV photo-convertors with applications as photocathodes for position sensitive detector systems. These can "fill the gap" in the 150-400nm wavelength regime between alkali halide photocathodes (4000Å, mutlialkali & GaAs). Currently CsTe photocathodes have fairly low efficiency (Fig. 1) in the 100nm to 300nm regime are sensitive to contamination and have no tolerance to gas exposure. We have prepared and measured a number of GaN photocathodes in opaque and semitransparent modes, achieving >50% quantum efficiency in opaque mode and ~35% in semitransparent mode (Fig. 2). The GaN photocathodes are stable over periods of >1 year and are robust enough to be re-activated many times. The cutoff wavelength is sharp, with a rapid decline in quantum efficiency at ~380-400nm. Application of GaN photocathodes in imaging devices should be feasible in the near future. Further performance improvements are also expected as GaN fabrication and processing techniques are refined.
    Full-text · Article · Dec 2003 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Les semi-conducteurs à base de composés III-V de type GaN présentent de nombreux avantages – liés essentiellement à leur grande bande interdite - par rapport aux semi-conducteurs traditionnels Si, ou III-V des filières GaAs. De plus, il est possible de former, comme pour les semi-conducteurs traditionnels III-V des hétérojonctions de type HEMT (High Electron Mobility Transistor) AlGaN/GaN permettant d'obtenir à la fois une forte densité de porteurs confinés à l'hétérojonction et des mobilités électroniques élevées. Ces composants sont à l'heure actuelle les candidats les plus prometteurs pour des applications hyperfréquences de puissance. Cependant, l'échauffement observé au cours du fonctionnement et les différentes étapes de réalisation des composants ont un impact anormal sur les performances intrinsèques du composant. La microspectrométrie Raman est une technique nondestructive et sans contact avec une résolution spatiale submicronique, adaptée à l'étude des HEMTs AlGaN/GaN en fonctionnement. L'utilisation de différentes longueurs d'onde excitatrices visible et UV permet de sonder les hétérostructures à différentes profondeurs de pénétration. Les informations obtenues avec cette technique d'analyse sont la composition de l'hétérostructure, les contraintes entre les différentes couches, la résistance thermique aux interfaces, la qualité cristalline des différentes couches, le dopage et le comportement thermique des différentes couches. Le développement d'un système de microspectrométrie Raman UV résolue en temps a permis d'analyser le comportement thermique transitoire des HEMTs AlGaN/GaN en fonctionnement et plus particulièrement dans la zone active du composant.
    Preview · Article ·
Show more