ArticlePDF Available

Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin

Authors:

Abstract and Figures

The conservation status of many wild fruit tree species that support rural people in Africa remains poorly documented despite its importance for their management. We compared the viability of tamarind (Tamarindus indica) populations, a dry land species that has nutritional, medicinal and cultural importance for rural communities, under different human-pressure levels. Materials and methods. The data relative to the tree diameter and height as well as the number of adults and stems were collected in plots of inventory and made it possible to calculate the dendrometric parameters for each targeted population, and to establish their diameter distribution. The dendrometric characteristics were analyzed by using nonparametric tests and the diameter distribution was adjusted to a truncated normal distribution. Results and discussion. Numbers of mature tamarind trees per hectare and regeneration (expressed as stem.ha(-1)) were relatively low, suggesting tamarind populations may not be self-rejuvenating. Nonetheless, significant variation occurred between habitat types (P < 0.001). Mature tree density in gallery forests [(18.2 +/- 10.1) trees.ha(-1)] was three to eight times higher than that of savannah woodlands [(5 +/- 4.5) trees.ha(-1)] and farmlands [(2.5 +/- 0.4) trees.ha(-1)]. Young plants followed the same trend, with (11.2 +/- 9.3) plants.ha(-1), (1.1 +/- 0.6) plants.ha(-1), and 0.00 plants.ha(-1), respectively. Diameter size class distributions departed from normality (P < 0.0001) and coefficient of skewness was positive irrespective of habitat type, indicating declining populations. However, median diameter values would suggest the species' populations in farmlands and savannah woodlands to be more vulnerable than those occurring in gallery forests. These findings would suggest that gallery forests best suit tamarind in situ conservation. The observed severe reduction of trees and juveniles in farmlands and woodlands may negatively impact the long-term viability of tamarind populations. Juveniles' introduction into farmlands may be needed to ensure conservation in agroforestry systems.
Content may be subject to copyright.
Original article
Fruits, vol. 65 (1) 1
Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.)
populations in the W National Park of Benin.
Abstract – Introduction. The conservation status of many wild fruit tree species that support rural peo-
ple in Africa remains poorly documented despite its importance for their management. We compared the
viability of tamarind (Tamarindus indica) populations, a dry land species that has nutritional, medicinal
and cultural importance for rural communities, under different human-pressure levels. Materials and
methods. The data relative to the tree diameter and height as well as the number of adults and stems
were collected in plots of inventory and made it possible to calculate the dendrometric parameters for
each targeted population, and to establish their structure in diameter. The dendrometric characteristics
were analyzed by using nonparametric tests and the diameter distribution was adjusted to a truncated
normal distribution. Results and discussion. Numbers of mature tamarind trees per hectare and regene-
ration (expressed as stem·ha–1) were relatively low, suggesting tamarind populations may not be self-
rejuvenating. Nonetheless, significant variation occurred between habitat types (P< 0.001). Mature tree
density in gallery forests [(18.2 ± 10.1) trees·ha–1] was three to eight times higher than that of savannah
woodlands [(5 ± 4.5) trees·ha–1] and farmlands [(2.5 ± 0.4) trees·ha–1]. Young plants followed the same
trend, with [(11.2 ± 9.3) plants·ha–1], [(1.1 ± 0.6) plants·ha–1], and [0.00 plants·ha–1], respectively. Diame-
ter size class distributions departed from normality (P< 0.0001) and coefficient of skewness was positive
irrespective of habitat type, indicating declining populations. However, median diameter values would
suggest the species’ populations in farmlands and savannah woodlands to be more vulnerable than those
occurring in gallery forests. These findings would suggest that gallery forests best suit tamarind in situ
conservation. The observed severe reduction of trees and juveniles in farmlands and woodlands may
negatively impact the long-term viability of tamarind populations. Juveniles’ introduction into farmlands
may be needed to ensure conservation in agroforestry systems.
Benin / Tamarindus indica / resource conservation / habitats / stand
characteristics / forest inventories / anthropic influence
Impact du type d'habitat sur la conservation des populations du tamarinier
(Tamarindus indica L.) dans le parc national du W au Bénin.
Résumé. – Introduction. Le statut de conservation de nombreuses espèces fruitières sauvages dont
dépendent les populations rurales en Afrique demeure mal documenté en dépit de son importance pour
la gestion de leurs populations. Nous avons comparé la viabilité des populations de tamariniers (Tama-
rindus indica), espèce ayant une importance alimentaire, médicinale et culturelle pour les communautés
rurales, sous différents degré de pression humaine. Matériel et méthodes. Les données relatives au dia-
mètre et hauteur des arbres ainsi que le nombre d’adultes et de juvéniles ont été collectées dans des pla-
cettes d’inventaire et ont permis de calculer pour chaque population ciblée, les paramètres
dendrométriques et d’établir leur structure en diamètre. Les caractéristiques dendrométriques ont été ana-
lysées en utilisant des tests non paramétriques et la distribution des diamètres a été ajustée à une distribu-
tion normale tronquée. Résultats et discussion. Le nombre de tamariniers adultes et la régénération
(exprimée en nombre de tiges·ha–1) ont été relativement faibles, suggérant que les populations de tama-
riniers ont une faible capacité à se régénérer. Néanmoins, une différence significative est apparue en
fonction du type d'habitat (P< 0,001). La densité des arbres adultes dans les forêts de galerie
[(18,2 ± 10,1) arbres·ha–1] a été trois à huit fois plus élevée que dans les savanes boisées [(5 ± 4,5)
arbres·ha–1] et dans les terres cultivées [(2,5 ± 0,4) arbres·ha–1]. Les jeunes plants ont exprimé la même
tendance avec [(11,2 ± 9,3) plants·ha–1], [(1,1 ± 0,6) plants.ha–1] et 0 plant·ha–1, respectivement. La distri-
bution des diamètres s’est écartée de la distribution normale (P< 0,0001) et le coefficient d’asymétrie a
été positif quel soit le type d'habitat, indiquant des populations en déclin. Cependant, la valeur médiane
des diamètres suggèrerait que les populations de T. indica dans les terres cultivées et dans les savanes
boisées sont plus vulnérables que celle des forêts de galerie. Ces résultats indiquent que les forêts galerie
conviendraient le mieux à la conservation in situ du tamarinier. La diminution critique des arbres et jeu-
nes plants observée dans les terres cultivée et les savanes boisées pourrait influencer négativement la via-
bilité à long terme des populations de tamariniers. L'introduction de jeunes plants dans les zones de
culture pourrait être nécessaire pour assurer la conservation de T. indica dans des systèmes d’agroforesterie.
Bénin / Tamari nd us in dic a / conservation des ressources / habitat /
caractéristique du peuplement / inventaire forestier / influence anthropique
1Lab. Appl. Ecol. Fac. Agron.
Sci., Univ. Abomey-Calavi, 01
BP 526, Cotonou, Benin
Belarmain.fandohan@laposte.
net
2Lab. Trop. Subtrop. Agric.
Ethnobot., Dep. Plant Prod.,
Fac. Biosci. Eng., Univ. Ghent,
Coupure Links 653, B-9000,
Ghent, Belgium
Impact of habitat type on the conservation status of tamarind
(Tamarindus indica L.) populations in the W National Park of
Benin
Adandé Belarmain FANDOHAN1*, Achille Ephrem ASSOGBADJO1, Romain Lucas GLELE KAKAÏ 1, Brice SINSIN1, Patrick VAN DAMME2
* Correspondence and reprints
Received 18 December 2008
Accepted 10 June 2009
Fruits,
2010, vol. 65, p. 1–9
© 2010 Cirad/EDP Sciences
All rights reserved
DOI: 10.1051/fruits/2009037
www.fruits-journal.org
RESUMEN ESPAÑOL, p. 9
2Fruits, vol. 65 (1)
A.B. Fadohan et al.
1. Introduction
Many tropical fruit trees are not the objects
of large world markets, but still have con-
siderable importance in local and national
economies, being harvested by rural popu-
lations for local consumption and commer-
cialization on a small scale [1]. Interest in
these species has reached a peak with new
initiatives in agroforestry. These initiatives
seek to integrate, into tropical farming sys-
tems, indigenous trees whose products have
traditionally been gathered from natural for-
ests [2], in order to provide marketable prod-
ucts from farms that will generate cash for
resource-poor rural households. To sustain
this goal, many studies have addressed mor-
phometric, genetic variabilities among and
within populations and fruiting potential
(for example, baobab [3, 4], Sclerocarya [5],
Vitellaria [6], Irvengia [7], Detarium [8]).
However, efforts in this direction are limited
by lack of information about the conserva-
tion status of populations of most of these
important multipurpose trees.
Like most other tropical countries, Benin
ecosystems are full of multipurpose tree
species [9]. Tamarindus indica L. is a semi-
evergreen multipurpose tree species of the
Fabaceae family. The species occurs in most
tropical countries in a wide range of habitats
ranging from natural stands to anthropo-
genic areas. It is a tree species that has nutri-
tional, medicinal and cultural importance
for rural communities [10, 11]. To date it has
shown a high economic value and has been
chosen as a model species to be domesti-
cated in Sub-Saharan Africa [12]. Studies on
the species in Asia and Africa have docu-
mented its domestication potential in terms
of socio-cultural and nutritional values, and
aptitude for seed and vegetative propaga-
tion [11]. The species’ distribution in Africa
has been mapped [13]. Although not
exhaustive, it has given evidence of the spe-
cies’ plasticity under tropical areas.
Recent work based on neutral molecular-
genetic markers [14] has highlighted a high
genetic diversity in West African popula-
tions, indicating no immediate risk of
genetic erosion in this region, as long as eco-
logical conditions continue to permit regen-
eration. In West Africa, the maintenance of
regeneration in tamarind populations has
been reported as being not assured at all [1]
but, to date, very few studies have directly
addressed tamarind populations’ structure
nor the causes underlying lack of regener-
ation using dendrometric characteristics and
diameter size distribution. Thus, the popu-
lation status of T. indica remains poorly
documented and understood, as for many
wild fruit trees that support rural popula-
tions in Africa [15].There is therefore a need
to document T. indica current populations’
conservation status, in order to generate
information that would allow guiding the
design of comprehensive intervention strat-
egies for the species’ conservation and
enhanced utilization.
Our study was therefore initiated with the
aim of examining the impact of different
habitat types; farmlands, savannah wood-
lands and gallery forests with different land
use models (that is, human pressure), on the
conservation status of T. indica popula-
tions, using dendrometric characteristics
and diameter size class distributions of the
trees as indicators of populations’ viability.
The research was undertaken posing the fol-
lowing questions: is the population struc-
ture of T. indica independent of habitat type
and human pressure? Which habitat type
may best suit T. indica in situ conservation?
2. Materials and methods
2.1. Study area
This study was carried out on a number of
tamarind populations established within the
W national park of Benin and around, where
the species has been documented to occur
in different habitats [16]. The sampled region
is located in the sudanian climatic zone
between lat. 11° 40’ N to 12° 23’ N and long.
2° 2’ E to 3° 2’ E, coinciding with up to 80%
of the W National Park of Benin (figure 1).
The mean annual rainfall is about 950 mm
and soils are mainly ferruginous [16].
The study was undertaken in three dif-
ferent vegetation types; gallery forests,
savannah woodlands and farmlands. In
both gallery forest and savannah woodland
Conservation of T. indica populations in Benin
Fruits, vol. 65 (1) 3
habitats, T. indica is associated with Grewia
bicolor Juss., Cissus quadrangularis L., Cap-
paris sepiara L., Feretia apodanthera Del.,
Anogeissus leiocarpa (D.C.) Guill. et Perr.
and Balanites aegyptiaca (L.) Del., while in
farmland, it is commonly seen with Vitel-
laria paradoxa Gaertn. f., Adansonia digi-
tata L., Sclerocarya birrea (A. Rich.) Hochst.
and Balanites aegyptiaca L. [16].
Gallery forests are characterized by a
longer period of soil water availability due
to the proximity of water courses. In these
forests, the species faces lower drought
stress conditions compared with the situa-
tion in farmlands and savannah woodlands.
This also results in more litter on the soil and
thus offers better conditions for seed germi-
nation and seedling survival even during
drought periods (personal field observa-
tions). Other important characteristics of
tamarind habitats are the termite mounds
and ant hills that occur under mature tam-
arind individuals, most frequently in savan-
nah woodlands and farmlands. The
localization of most of the surveyed gallery
forests (well-protected zones of the W
national Park), the density of their canopies,
topographic conditions along water courses
and the presence of some feared snakes
such as Python sebea Gmelin limit and make
tamarind resource harvesting and other
human disturbances difficult (field survey).
In contrast, the savannah woodlands as well
as farmlands are more open, close to sur-
rounding villages, and as a result subject to
intensive extractive uses of tamarind [16]. In
the two latter habitats, tamarind mature trees
and juveniles are subject to seasonal fire. On
top of this, farmlands are characterized by
land clearing and tree removal for agricul-
tural purposes. Regarding the aforemen-
tioned characteristics the investigated
habitats were categorized as follows: gallery
forests (less human pressure), savannah
woodlands (medium human pressure) and
farmlands (high human pressure).
2.2. Inventory approach and data
collection
The indicators of viability are: mature tree
density, young plants (expressed as
stems·ha–1), diameter size class distribution
and its coefficient of skewness (g1), and
median diameter (Dm). A s a re su lt o f t he di f-
ferences in the vegetation structure, man-
agement systems and size in the different
habitat types, plot outlines and layout were
fulfilled differently to ensure easy data col-
lection and enhance accuracy in the estima-
tion of the variables under investigation.
Finally, in each natural habitat type (gallery
forests and savannah woodlands), 17 circu-
lar plots of 5 000 m2 were laid out along four
azimuthal transects. In farmlands, the entire
farm of a given household was taken as a
Figure 1.
Area prospected for studying
the conservation status of
tamarind (Tamarindus indica L.)
populations in the W National
Park of Benin and location of
sampled sites [16].
4Fruits, vol. 65 (1)
A.B. Fadohan et al.
plot. This was done because T. indica's
niche on a farm is farmer-controlled and not
random in distribution as is always the case
for natural habitats. Randomization of natu-
ral habitat plots was achieved by laying out
plots at 1-km intervals, while farm plots were
laid out at 500-m intervals. To make the on-
farm data representative, two to three plots
were laid out in each of the 18 villages sur-
rounding the W National Park, which is a
total of 39 plots. Parameters recorded in each
plot were: all individuals above 25 cm
height, diameter at 130 cm height (D130)
using a forest tape, number of mature trees
(trees with D130 5 cm), and their height
using a clinometer. We considered as young
plants all individuals simultaneously fulfill-
ing the following conditions: height above
25 cm and D130 inferior to 5 cm.
2.3. Computation of dendrometric
parameters
2.3.1. Stem density
Stem density (N), that is, the average
number of tamarind individuals per hectare
of a given stage (here, mature trees and
young plants), was expressed as individu-
als·ha–1: N=n/s, where n is the overall
number of individuals of a given stage in the
plot and s is the plot surface (ha). Compar-
ison between habitats was made using the
Kruskal-Wallis test for k independent sam-
ples and the Mann-Whitney test.
2.3.2. Stem diameter class distribution
Stem diameter structures were established
by grouping D130 data into size classes of
10 cm in width. A histogram showing tree
density according to diameter classes was
established for each habitat type, using the
Minitab statistical package. The obtained
structures were subsequently adjusted to a
truncated normal distribution. The limit con-
sidered for the truncated distributions was
5 cm and was related to the inventory
design, that only took into account trees of
at least 5 cm in D130. Log-linear analysis was
then performed with SASv9 software to
check models’ adequacy.
To discuss population trends within hab-
itats, the coefficient of skewness (g1) was
used. This coefficient, which describes
the evenness of truncated distribution, is
a measurement of the relative proportion
of small versus large stems in a population
[17] and is defined as follows:
, where
is the number of stems; xi and are the
log(D130) of stem i and the mean of xi,
respectively; s is the standard deviation of
xi; g1>0 for size distributions with rela-
tively few small stems and many large stems
(that is, declining population); and g1<0
for distributions with relatively few large
stems and many smaller sized stems (that is,
increasing population) [17].
The median value of the diameter
size class distribution (Dm) was computed
to discuss the population trends
between habitats and is defined as
Dm = L1 + [((n/2) – (Σf )1)/fn] × c, where Dm
is the median value of the diameter size class
distribution; L1 is the lowest class boundary
of the median class (that is, the class con-
taining the median); n is the number of
stems; (Σf )1 is the sum of frequencies of all
classes lower than the median class; fm is the
frequency of the median class; and c = size
of median class interval.
For a given site, a population with a lower
median diameter (that is, relative to smaller
stems) tends to increase in abundance more
rapidly than at other sites [18].
3. Results
3.1. Impact of habitat type
on dendrometric characteristics
The findings of this study indicated signifi-
cant variations in the number of mature trees
per hectare between habitats (H = 43.54;
P< 0.001). It was three to eight times higher
in gallery forests than, respectively, savan-
nah woodlands and farmlands (table I).
Comparing the regeneration, the density
obtained in gallery forests was above
10 times higher than that of savannah wood-
lands (H = 54.82; P<0.001). No regeneration
was found in farmlands. The ratio [mature
g1
n xixi
()
3
i
/ n1()n2()s3
=
x
Conservation of T. indica populations in Benin
Fruits, vol. 65 (1) 5
trees / regeneration] also differed with hab-
itat type and increased with higher human
pressure.
The mean diameter significantly differed
between habitats, ranging from 47.9 cm in
farmlands to 28.9 cm in gallery forests
(H = 45.41; P< 0.001). In contrast, differ-
ences among values of the mean height
were found to be not significant, ranging
from 12.8 m in farmlands to 10.5 m in savan-
nah woodland (H = 4.86; P= 0.088).
3.2. Impact of habitat type on stem
diameter class distributions
In savannah woodlands and farmlands, the
size structure of trees was bell-shaped with
a small proportion of young stems, but
departed from the normal distribution, that
is, the characteristic distribution of the stem-
diameter structure of a population, and is
skewed to the right (respectively,
P< 0.0001; g1= 0.55; Dm= 28.2 and
P< 0.0001; g1= 2.18; Dm= 43.7). In gallery
forests, in contrast, the size structure was
more similar to the inverse J-shape with an
apparently high proportion of small stems,
and departed from the normal distribution,
but is also skewed to the right (P< 0.0001;
g1=0.34; Dm= 25.2). The values obtained
of the coefficient of skewness (g1) are all
positive, meaning that the size distributions
showed relatively few small stems and many
large stems irrespective of habitat type.
However, the median diameter (Dm) value
was lower in gallery forests than that in
savannah woodlands, farmlands having the
highest value (figure 2).
4. Discussion
4.1. Habitat type impact on
T. ind i ca
populations
Measuring conservation status is straightfor-
ward [19]. But investigating anthropogenic
influence on plants requires long-term mon-
itoring data on population trends, which is
extremely complicated when addressing
long-living slow-growing trees such as tam-
arind. In the absence of long-term data, a
single survey of size class distribution is a
rapid and useful approach to assess popu-
lation structure [20]. Factors that may affect
the size class distribution of a plant species
are light tolerance, life form [21], habitat type
[22], climate, anthropogenic activities [23],
agroforestry uses [24] and individual species
survival strategies [25]. In the present study,
the investigated populations experience the
same conditions except for habitat type,
anthropogenic activity pressure (fire and
land clearing for agricultural purposes) and
agroforestry uses (harvesting pressure).
The findings of our study clearly show
that tamarind mature trees and regeneration
decline from gallery forests to farmlands and
tend to be critically reduced in habitats of
higher human pressure and drought stress,
that is, farmlands. The differences may be
due to the different behavior of regeneration
shown by the species according to its hab-
itats: seed- and root sucker-originated seed-
lings were observed. Root suckers were
observed in gallery forests only and are
probably one of the reasons underlying the
gregarious spatial repartition shown by the
Tab l e I .
Mean and standard deviation of dendrometric characteristics of Tamarindus indica in three habitat types of the
W National Park of Benin.
Habitat types Mature trees
(trees·ha–1)
Regeneration
(stems·ha–1)
Ratio
[mature trees
/ regeneration]
Diameter at breast height
or D130
(cm)
Total height
(m)
Gallery forest 18.2 ± 10.06 a 11.2 ± 9.3 a 1.63 28.9 ± 1.4 b 10.7 ± 0.5 a
Tree savannah 5.0 ± 0.9 b 1.1 ± 0.6 b 4.64 29.0 ± 2.4 b 10.5 ± 0.8 a
Farmland 2.5 ± 0.4 c 0 c 47.9 ± 1.9 a 12.8 ± 0.4 a
Means in a column followed by the same letter are not significantly different.
6Fruits, vol. 65 (1)
A.B. Fadohan et al.
species in that habitat type. The relatively
high aptitude of tamarind trees to make root
suckers has been documented even if it is
not explicit it depends on habitat type [26].
Contribution of human harvesting pressure
to the low rate of regeneration is compli-
cated and still not well documented [27].
However, a recent study on Pentadesma
butyracea Sabine has suggested over-
extraction of the reproductive structures
(fruits, seeds, flowers and stamens) to be a
partial consequence of low regeneration
[28]. Thus, the harvesting of seeds or fruits
needs to be undertaken with caution, since
heavy harvesting could lead to long-term
detrimental effects on recruitment of new
individuals [29]. In the specific case of tam-
arind, if not extracted, fruits may remain on
the trees for one to two years after ripening
and generally most of the seeds are
destroyed and eaten by insects before the
pods fall (field observation). Seedlings that
originated from seeds might then be natu-
rally very few and, thus, harvesting pressure
influence on the regeneration might be of
less importance. In contrast, land clearing,
fire and tree density reduction for agricul-
tural purposes [30] may significantly affect
seedling establishment and threaten the
species. Little attention has been given,
despite the need for it, to the evaluation of
T. indica in its habitats [31]. In Kenya, it was
reported that T. indica population structure
showed low regeneration, while mature
trees revealed a higher density along water
courses than that of farmlands and savannah
woodlands [32]. It is required ecologically
that an adequately high abundance of indi-
viduals of a given species occurs in the dif-
ferent reproductive stages (seedlings,
juveniles and mature trees) in habitats, for
continuity [33]. Species occurring in low
densities in populations are vulnerable to
extinction under human use pressure and
other internal and external disturbances
[34]. In this regard, reduction of mature tree
density linked with scarcity of regeneration
of T. indica, especially in farmlands, might
indicate the absence of any process of sys-
tematic sparing or recruitment favoring as is
the case in the Sahel zone [1], and thus indi-
cates nonself-rejuvenating populations.
The average diameter is significantly
lower in natural habitats compared with that
in farmlands. This may be attributed to
lower growing rates in the former due to a
more intense interspecific competition,
which is naturally lower in woodlands and
artificially eliminated in farmlands. Such
results have been mentioned for other spe-
cies, especially Sclerocarya birrea in South
Africa [35] and Quercus ilex in Spain [24]. In
contrast to our expectations, the average
height showed the same gradient between
habitats. This may be due to an abundance
of relatively young trees in gallery forests.
However, the tallest trees are found in
gallery forests, a possible result of higher
competition for light.
Figure 2.
Diameter size class distribution
of Tamarindus indica trees in
three habitat types (savannah
woodlands, gallery forests and
farmlands) of the W National
Park of Benin.
Conservation of T. indica populations in Benin
Fruits, vol. 65 (1) 7
In diameter size class distribution, all the
obtained curves deviated from the normal
distribution. However, the distribution was
closer to a bell-shaped type both in savan-
nah woodlands and farmlands, while it was
similar to an inverse J-shaped type in gallery
forests. Such distributions would suggest
that gallery forest populations are extending
while savannah woodlands’ and farmlands’
are declining [36]. Although studies have
often relied on the assumption that standing
distribution reflects future population
changes, studies to directly test this hypoth-
esis have proven that diameter size distribu-
tion is not a good predictor of population
changes [18, 37]. However, the coefficient of
skewness (g1) of this distribution is able to
predict the direction of population change,
according to the same authors. In our study,
all the distributions show a positive coeffi-
cient of skewness (g1> 0), indicating a dis-
tribution with relatively few small stems
(that is, juveniles) and many large stems
(that is, mature trees) and, thus, vulnerable
populations irrespective of habitat type.
However, a population with a lower median
diameter at a given site tends to increase in
abundance more rapidly than at other sites
[18]. In this regard, T. indica’s population
might increase more rapidly in gallery for-
ests than in savannah woodlands and farm-
lands. Thus, gallery forest tamarind
populations might be less vulnerable than
those of savannah woodlands and farm-
lands.
4.2. Implication for conservation
and sustainable management
Tamarind is often quoted as a dry ecosystem
species but our findings would suggest that
the species’ populations seem to be more
viable in gallery forests and thus under less
drought conditions. This habitat type might
therefore best suit the species' in situ con-
servation. However, trends in the species
population showed no evidence of stability
or long-term viability irrespective of habitat
type. In farmlands where regeneration fail-
ure can clearly be linked to agricultural
activities, the low rhythm of expansion
noticed may be attributed to anthropogenic
interference. Thus, the domestication of the
species by means of young plant production
and introduction into rural agricultural sys-
tems could help ensure rejuvenation and
thus long-term circa situ conservation and
utilization of the species. In contrast, in the
natural habitats of the species, particularly
in gallery forests, interpreting the ecological
status of the species and building effective
in situ conservation strategies will need bet-
ter understanding of factors and processes
that impact the population dynamics of the
species. Whatever the case, silvicultural
method building, identification of the best
propagation methods and drought tolerance
strengthening with regard to specific envi-
ronments will be necessary for an effective
management plan for T. indica.
Acknowledgements
Our study was carried out with the financial
support of the European Union through the
Project of Domestication and Development
of Baobab and Tamarind (DADOBAT).
References
[1] Diallo B.O., Mckey D., Chevallier M.-H., Joly
H.I., Hossaert-Mckey M., Breeding system
and pollination biology of the semi-domesti-
cated fruit tree, Tamarindus indica L. (Legu-
minosae: Caesalpinioideae): Implications for
fruit production, selective breeding, and
conservation of genetic resources, Afr. J.
Biotechnol. 7 (22) (2008) 4068–4075.
[2] Leakey R.R.B., Simons A.J., The domestica-
tion and commercialization of indigenous
trees in agroforestry for the alleviation of
poverty, Agrofor. Syst. 38 (1998) 165–176.
[3] Assogbadjo A.E., Kyndt T., Chadare F.J.,
Sinsin B., Gheysen G., Eyog-Matig O., Van
Damme P., Genetic fingerprinting using
AFLP cannot distinguish traditionally classi-
fied baobab morphotypes, Agrofor. Syst.
(2008) DOI: 10.1007/s10457–008–9157-y.
[4] Assogbadjo A.E., Sinsin B., Van Damme P.,
Caractères morphologiques et production
des capsules de baobab (Adansonia digitata
L.) au Bénin, Fruits 60 (5) (2005) 327–340.
[5] Leakey R.R.B., Shackleton S., du Plessis P.,
Domestication potential of marula (Sclerocarya
8Fruits, vol. 65 (1)
A.B. Fadohan et al.
birrea sbsp. caffra) in South Africa and
Namibia: 1. Phenotypic variation in fruit
traits, Agrofor. Syst. 64 (2005) 25–35.
[6] Kelly B.A., Hardy O.J., Bouvet J.-M., Tempo-
ral and spatial genetic structure in Vitellaria
paradoxa (shea tree) in an agroforestry sys-
tem in Mali, Mol. Ecol. 13 (2004) 1231–1240.
[7] Anegbeh P.O., Usoro C., Ukafor V., Tchoundjeu
Z., Leakey R.R.B., Schreckenberg K.,
Domestication of Irvengia gabonensis: 3.
Phenetopic variation in fruits and kernels in
Nigeria, Agrofor. Syst. 58 (2003) 213–218.
[8] Kouyaté A.M., Van Damme P., Caractères
morphologiques de Detarium microcarpum
Guill. et Perr. au sud du Mali, Fruits 57 (2002)
231–238.
[9] Codjia J.T.C., Assogbadjo A.E., Mensah
M.R., Diversité et valorisation au niveau local
des ressources forestières alimentaires du
Bénin, Cah. Agric. 12 (2003) 321–331.
[10] El-Siddig K., Gunasena H.P.M., Prasad B.A.,
Pushpakumara D.K.N.G., Ramana K.V.R.,
Vijayanand P., Williams J.T., Tamarind, Tam a -
rindus indica L., Southampt. Cent. Underutil.
Crop., Southampt., UK, 2006.
[11] Jama B.A., Mohamed A.M., Mulatya J., Njui
A.N., Comparing the “Big Five”: A framework
for the sustainable management of indige-
nous fruit trees in the drylands of East and
Central Africa, Ecol. Indic. (2007) DOI:
10.1016/j.ecolind.2006.11.009.
[12] Eyog Matig O., Gaoué O.G., Dossou B.,
Réseaux « Espèces Ligneuses Alimentaire ».
C. R. Prem. Réun. Réseau tenue du 11–13
déc. 2000 au CNSF, Ouagadougou, Burkina
Faso, Inst. Int. Ressour. Phytogénét., 2002.
[13] Salim A., Simons A., Waruhin A., Orwa C.,
Agroforestry database: A tree species refer-
ence and selection guide and tree seed sup-
pliers directory, Int. Counc. Res. Agrofor.,
Nairobi, Kenya, 1998.
[14] Diallo B.O., Joly H.I., Mckey D., Hossaertmckey
M., Chevallier M.H., Genetic diversity of
Tamarindus indica populations: Any clues on
the origin from its current distribution? Afr. J.
Biotechnol. 6 (7) (2007) 853–860.
[15] Leakey R.R.B., Potential for novel food prod-
ucts from agroforestry trees: a review, Food
Chem. 66 (1999) 1–14.
[16] Fandohan A.B., Structure des populations et
importance socioculturelle du tamarinier
(Tamatindus indica L.) dans la commune de
Karimama (Bénin), Fac. Sci. Agron., Univ.
Abomey-Calavi, Bénin, Mém. DEA, 2007,
55 p.
[17] Bendel R.B., Higgins S.S., Teberg J.E., Pyke
D.A., Comparison of skewness coefficient,
coefficient of variation, and Gini coefficient
as inequality measures within populations,
Oecol. 78 (1989) 394–400.
[18] Feeley J.K., Davies S.J., Nur Supardi Noor
Md., Kassim A.R., Tan S., Do current stem
size distributions predict future population
changes? An empirical test of intraspecific
patterns in tropical trees at two spatial
scales, J. Trop. Ecol. 23 (2007) 191–198.
[19] Lykke A.M., Assessment of species compo-
sition change in savannah vegetation by
means of woody plant’s size class distribu-
tions and local information, Biodivers. Con-
serv. 7 (1998) 1261–1275.
[20] Shackleton S.E., The significance of local
level trade in natural resource products for
livelihoods and poverty alleviation in South
Africa, Rhodes Univ., PhD thesis, Grahamst.,
S. Afr., 2005.
[21] Tesfaye G., Teketay D., Fetene M., Regener-
ation of fourteen tree species in Harenna for-
est, southeastern Ethiopia, Flora 197 (2002)
461–474.
[22] Wadt L.H.O., Kainer K.A., Gomes-Silva
D.A.P., Population structure and nut yield of
Bertholletia excelsa stand in southwestern
Amazonia, For. Ecol. Manage. 211 (2005)
371–384.
[23] Omeja P., Obua J., Cunningham A.B.,
Demand and supply of wood for drum mak-
ing in Central Uganda, Int. For. Review 7 (1)
(2005) 21–26.
[24] Pulido F.J., Diaz M., Hidalgo de Trucios S.J.,
Size structure and regeneration of Spanish
holm oak Quercus ilex forest and dehesas:
Effects of agroforestry use on their long term
sustainability, For. Ecol. Manage. 146 (2001)
1–13.
[25] Su J.C., Debinski D.M., Jajubauskas M.E.,
Kindscher K., Beyond species richness:
community similarity as a measure of cross-
taxon congruence for coarse-filter conserva-
tion, Conserv. Biol. 18 (1) (2004) 167–175.
[26] Bellefontaine R., Pour de nombreux ligneux,
la reproduction sexuée n’est pas la seule
voie : analyse de 875 cas, Sécher. 16 (4)
(2005) 315–317.
[27] Murali K.S., Shankar U., Shaanker R.U.,
Ganeshaiah K.N., Bawa K.S., Extraction of
non-timber forest products in the forests of
Biligiri Rangan Hills, India. 2. Impact of NTFT
extraction on regeneration, population struc-
ture, and species composition, Econ. Bot.
50 (3) (1996) 252–269.
Conservation of T. indica populations in Benin
Fruits, vol. 65 (1) 9
[28] Avocèvou-Ayisso C., Sinsin B., Adégbidi A.,
Dossou G., Van Damme P., Sustainable use
of non-timber forest products: Impact of fruit
harvesting on Pentadesma butyracea regen-
eration and financial analysis of its products
trade in Benin, For. Ecol. Manag. 257 (2009)
1930–1938.
[29] Shackleton C.M., Guthrie G., Main R., Esti-
mating the potential role of commercial over-
harvesting in resource viability: a case study
of five useful tree species in South Africa,
Land Degrad. Dev. 16 (2005) 273–286.
[30] Sinsin B., Sinadouwirou Th., Valorisation
socio-économique et pérennité de Penta-
desma butyracea en galeries forestières au
Bénin, Cah. Agric. 12 (2003) 1–5.
[31] Gunasena G., Hughes A., Ta marindus indic a,
Int. Cent. Underutil. Crop., Southampt., UK,
2000.
[32] Nyadoi P., Population structure and socio-
economic importance of Ta m a rind u s i n d i ca
in Tharaka District, Eastern Kenya, Makarere
Univ., Thesis, Uganda, 2004, 110 p.
[33] Denslow J.S., Disturbance and diversity in
tropical rain forests: the density effect, Ecol.
Appl. 5 (1995) 962–968.
[34] Cunningham A.B., Mbenkum F.T., Sustaina-
bility of harvesting Prunus africana bark in
Cameroun: a medicinal plant in international
trade, Div. Ecol. Sci., UNESCO, Paris,
France, People Plants Work. Pap. 2 (1993)
11–46.
[35] Shackleton C.M., Botha J., Emanuel P.L.,
Productivity and abundance of Sclerocarya
birrea Caffra in and around rural settlements
and protected area of the bushbuckridge
lowed, South Africa, For. Trees Livelihoods
13 (2003) 217–232.
[36] Sokpon N., Biaou H.S., The use of diameter
distribution in sustained-use management of
remnant forests in Benin: case of Bassila for-
est reserve in North Benin, For. Ecol. Man-
age. 161 (2002) 13–25.
[37] Condit R., Sukumar R., Hubbell S.P., Foster
R.B., Predicting population trends from size
distribution: Direct test in tropical tree com-
munity, Am. Nat. 152 (1998) 495–509.
Impacto del tipo de hábitat sobre la conservación de las poblaciones del
tamarindo (Tamarindus indica L.) en el parque nacional del W en Benín.
Resumen.– Introducción. El estado de conservación de numerosas especies fruteras silvestres,
de las cuales dependen las poblaciones rurales en África, permanece mal documentada, a pesar de
su importancia para la gestión de sus poblaciones. Comparamos la viabilidad de las poblaciones
de tamarindos (Tamarindus indica), especie con una importancia alimenticia, medicinal y cultural
para las comunidades rurales, bajo diferentes niveles de presión humana. Material y métodos.
Los datos relativos al diámetro y a la altura de los árboles, así como el número de adultos y de
juveniles, se recopilaron en las parcelas de ensayo y permitieron calcular, para cada población
determinada, los parámetros dendrométricos así como establecer su estructura en diámetro. Las
características dendrométricas se analizaron mediante el empleo de pruebas no paramétricas; y, la
distribución de los diámetros se ajustó a una distribución normal truncada. Resultados y discu-
sión. El número de tamarindos adultos así como la regeneración (expresada en número de
ramas·ha–1) fueron relativamente débiles, lo que sugirió que las poblaciones de tamarindos poseen
una capacidad de regenerarse débil. No obstante, una diferencia significativa apareció en función
del tipo de hábitat (P< 0.001). La densidad de los árboles adultos en los bosques de galería
[(18.2 ± 10.1) árboles·ha–1] fue de tres a ocho veces más elevada que en las sabanas arboladas
[(5 ± 4.5) árboles·ha–1] que en tierras cultivadas [(2.5 ± 0.4) árboles·ha–1]. Los jóvenes plantones
expresaron la misma tendencia con [(11.2 ± 9.3) plantones·ha–1], [(1.1 ± 0.6) plantones .ha–1] y 0
plantón·ha–1, respectivamente. La distribución de los diámetros se separó de la distribución normal
(P< 0.0001) y el coeficiente de asimetría fue positivo, indiferentemente del tipo de hábitat, lo que
indicó así las poblaciones en decadencia. Sin embargo el valor medio de los diámetros sugirió que
las poblaciones de T. indica en las tierras cultivadas y en las sabanas arboladas son más vulnera-
bles que aquellas de bosque de galería. Dichos resultados indican que los bosques de galería con-
vendrían mejor para la conservación in situ del tamarindo. La disminución crítica de los árboles y
de los jóvenes plantones, observada en las tierras cultivadas y en las sabanas arboladas podría
influenciar negativamente la viabilidad a largo plazo de las poblaciones de tamarindos. La intro-
ducción de jóvenes plantones en las zonas de cultivo podría ser necesaria para garantizar la conser-
vación de T. indica en sistemas de agroforestería.
Benin / Tamarindus indica conservación de los recursos / habitat /
características del rodal / inventarios forestales / influencia antrópica
... The origin of Tamarindus indica is still uncertain but probably indigenous to the dry savannahs of tropical Africa. From the family Leguminosae (Detarioideae), It performs well in both semi-arid and humid monsoon climates and can grow on a wide range of soil types (Fandohan et al., 2010b). It tolerates temperatures up to 47 °C but is very sensitive to frost annual rainfall of 500-1500 mm but tolerates down to 350 mm if irrigated at the time of establishment. ...
... The ethnobotanic use value (EUV k ) of a plant species for each use category by all the respondents of a given ethnic group (EUV k ), is computed using the formula developed by Fandohan et al. (2010b): where N is the total number of respondents considering one ethnic group; and EUV ek is the ethnobotanic use value per use category given by one respondent. ...
... The total ethnobotanic use value (EUV t ) per ethnic group for all use categories for each plant species was computed using the relationship described by Phillips and Gentry (1993) and modified by Fandohan et al. (2010b): EUV t is the total ethnobotanic use value of the species for all the use categories cited for each socio-linguistic group. ...
Article
Full-text available
This study assessed the vulnerability of five indigenous agroforestry trees to climate change: Adansonia. digitata, Vitellaria paradoxa, Parkia biglobosa, Tamarindus indica, and Vitex doniana, using the vulnerability of rural communities that rely on these species as a proxy. An integrated assessment approach, encompassing exposure, sensitivity, and adaptive capacity was adopted. Individual questionnaires were administered to 340 farmers, across seven Local Government Areas (LGA): Bosso, Rafi, Lavun, Lapai, Mashegu, Kontagora, and Borgu in Niger State. Data were collected on farmers’ perceptions about species vulnerability to climate change. The vulnerability index was computed based on nineteen indicators. Trend analysis of rainfall and temperature dataset over 40 years, indicated on one side no trend of annual rainfall, but a significant increase of annual temperature on the other side, supported by high intra-annual variability. Although observed variabilities in the climate were confined within the known tolerance limits of these species, reduction in productivity was the most reported impact (58.21% of the respondents). A change in species’ distribution, progressive extirpation, premature fructification, and tree mortality were also mentioned among the impacts of climate change. V. doniana was perceived to be the most vulnerable by 68.75% of the respondents followed by A. digitata, while V. paradoxa and T. indica seemed not to be vulnerable to climate change according to 48.65% and 27.00% of the respondents, respectively. There was a spatial variability of species vulnerability. The study concluded that the cultural importance of the species influences the extent to which the species are perceived to be vulnerable to climate change. This conclusion draws more attention toward the promotion of sustainable use and conservation of indigenous tree species to reduce their vulnerability to future climate conditions.
... Le tamarinier est une espèce hermaphrodite dont le développement du bourgeon floral s'étend sur 20 jours (Diallo, 2001 ;El-Siddig et al., 2006). En dépit des efforts pour l'épargner lors de l'installation des champs, des travaux récents ont montré que ses populations dans les parcs agroforestiers traditionnels sont beaucoup plus vulnérables que dans les aires protégées (Fandohan et al. 2010b ;Nyadoï, et al., 2011). Cette vulnérabilité est caractérisée par une faible capacité de régénération. ...
... Alternativement, le tamarinier peut être propagé avec succès par boutures de racines et de tiges ou par bourgeonnement et greffage. La conservation ex situ, in situ mais aussi circa situm du tamarin est pratiquée dans de nombreux pays (Fandohan et al., 2010b). Le tamarinier est également un arbre important dans les jardins familiaux en Asie du sud et du sud-est. ...
... La fragmentation, la destruction ou la conversion des habitats en espaces agricoles constituent sans aucun doute les plus grandes menaces à la survie de l'espèce. En dépit des efforts locaux pour sa préservation circa situm, l'absence de régénération dans les agrosystèmes traditionnels suggère un risque élevé d'extirpation des habitats anthropisés (Fandohan et al., 2010b). Le tamarinier fait aussi face à des attaques de certains nuisibles qui portent préjudices aux différents organes / parties des arbres (Tableau 4). ...
Article
Full-text available
Tamarindus indica is an agroforestry fruit species very popular in Africa and Asia. This review aimed to document the contributions and the gaps of research efforts on the species, in order to identify the research prospects. Literature search was carried out with the search engine and database “Google Scholar” and AGORA on the basis of the Latin name “Tamarindus indica” over a period of 25 years. Analysis of the literature showed that T. indica is widely exploited for its food and medicinal uses, mainly. It constitutes a cash crop in Asia while it is still undervalued in Africa. A considerable amount of research has focused on ecology, the structure of natural populations, pests and the chemical properties of its organs. Domestication and sustainable use of this species in Africa demand further research endeavors in silviculture, ecological genetics and phytopathology. This would facilitate integration of tamarind into formal production and conservation policies.
... Ces densités sont comparables à celles des parcs agroforestiers à baobab (Kebenzikato et al., 2014) (Aleza et al., 2015 ;Padakale et al., 2015 ;Atakpama et al., 2022a). Par contre ces densités sont plus élevées que celles rapportées au Niger et Sénégal variant entre 2 et 10 tiges/ha Garba et al., 2020) et dans les savanes et les terres agricoles du Bénin, 5 tiges/ha (Fandohan et al., 2010b). La variabilité des densités se justifie par le mode de gestion. ...
... Contrairement aux structures asymétriques positives obtenues dans cette étude, Garba et al. (2020) ont obtenu au Niger des structures asymétriques négatives (c ˃ 3,6), caractéristiques des populations à prédominance d'individus âgés. Ce même constat est rapporté par l'étude sur T. indica au Bénin qui a montré un coefficient d'asymétrie positif (g > 0), indiquant une distribution avec relativement peu d'individus de faibles diamètres (Fandohan et al., 2010b). ...
Article
Full-text available
Le tamarinier (Tamarindus indica L.) est un fruitier spontané aux usages multiples. Bien que reconnu comme très utilitaire en Afrique subsaharienne, au Togo, l’on ne dispose pas de caractéristiques écologiques et démographiques susceptibles de permettre une meilleure gestion de cette ressource. La présente étude dans la zone soudanienne du Togo, s’inscrit dans le cadre de la gestion durable des habitats à T. indica au Togo. Plus spécifiquement, elle vise à : (i) évaluer la diversité spécifique et (ii) caractériser la structure démographique des parcs agroforestiers à T. indica dans la zone soudanienne du Togo. L’analyse s’est basée sur des inventaires forestiers et floristiques orientés par la présence de T. indica au sein de 149 relevés de 2500 m². Les résultats révèlent une diversité de 38 espèces ligneuses réparties en 37 genres et 21 familles. Six (6) groupements de parcs ont été discriminés : les jachères à T. indica et Diospyros mespiliformis Hochst., les champs à T. indica et Anogeissus leiocarpus (DC.), les bosquets sacrés à T. indica et Sterculia setigera Delile, les champs à T. indica et Azadirachta indica A. Juss, les champs à T. indica et Vitellaria paradoxa C.F. Gaertn et les vieux champs à dominance T. indica. La densité des pieds adultes de T. indica est comprise entre 8,55 et 12,30 tiges/ha. Les structures horizontale et verticale sont en cloche dissymétrique gauche avec une relative représentativité des individus de faibles diamètres et hauteurs. La régénération naturelle est faible avec le taux compris entre 23,08 % et 42,14 %. Il est par conséquent important de mettre en œuvre un programme de régénération assisté en vue d’améliorer la capacité de régénération de cette espèce. Pour ce faire, des études de complétude sur les exigences pédoclimatiques du développement de l’espèce s’avèrent nécessaires.
... La présente étude vise à évaluer l'influence des modes d'affectation des terres sur les caractéristiques dendrométriques, les types morphologiques et la phénologie de B. costatum dans la Réserve de biosphère de la Pendjari (RBP). Considérant que le statut écologique des peuplements d'une espèce forestière varie suivant un gradient de mesures de protection (Assogbadjo et al., 2006 ;Djossa et al., 2008 ;Fandohan et al., 2010), nous avons émis l'hypothèse que les caractéristiques dendrométriques, les structures en diamètre, les types morphologiques et la phénologie de l'espèce varient suivant les modes d'affectation des terres. ...
... En effet, les arbres se développent normalement dans les formations ouvertes comme la zone cynégétique de la Pendjari et la chaîne de l'Atacora. De tels résultats ont été mentionnés pour d'autres espèces agroforestières telles que Quercus ilex L. (Pulido et al., 2001) et Tamarindus indica L. (Fandohan et al., 2010). Les résultats ont également révélé que la régénération naturelle est plus importante dans la zone cynégétique de la Pendjari et la chaîne de l'Atacora que dans le Parc national de la Pendjari et la zone d'occupation contrôlée. ...
Article
Full-text available
Bombax costatum est une espèce agroforestière menacée de disparition du fait des fortes pressions anthropiques qu’elle subit par le prélèvement de son calice. La présente étude a pour objectif d’évaluer l’influence des modes d’affectation des terres sur les caractéristiques dendrométriques, les types morphologiques et la phénologie de B. costatum dans la Réserve de biosphère de la Pendjari (RBP). Quatorze placeaux de 200 m × 200 m répartis dans quatre modes d’affectation des terres (zone d’occupation contrôlée, chaîne de l’Atacora, zone cynégétique de la Pendjari et Parc national de la Pendjari) de la RBP ont été inventoriés. Les données telles que le diamètre à hauteur de poitrine, la hauteur totale, le nombre d’individus, l’aspect de l’écorce et la couleur des fleurs ont été collectées. Les caractéristiques structurales de B. costatum ont été évaluées à trois niveaux : les paramètres dendrométriques dont la densité, le diamètre moyen, la surface terrière et la hauteur moyenne ; les structures en diamètre ; la distribution de fréquence des différents types morphologiques obtenus (aspect de l’écorce, couleur de la fleur). Pour tester les différences entre les modes d’affectation des terres, une ANOVA, une analyse log-linéaire et une analyse de covariance ont été effectuées respectivement sur les paramètres dendrométriques et les types morphologiques suivant les modes d’affectation des terres. Le mode d’affectation des terres a un effet significatif (P < 0,05) sur la densité des individus adultes, le diamètre moyen, la hauteur moyenne, les types morphologiques et la phénologie de B. costatum. La densité des individus adultes est plus élevée dans les zones d’occupation contrôlée et la chaîne de l’Atacora. Il ressort des résultats que l’espèce a encore un potentiel semencier qui assure sa pérennisation mais qu’une utilisation contrôlée est nécessaire pour sa conservation durable.
... This allowed the following of the ecological distribution of tree species (Tahir et al. 2022). The tree species in the farmlands is not randomly distributed as in natural habitats (Fandohan et al. 2010). Therefore, data collection on the tree species was carried out in the entire of each of forty-two E = H log 2 S ; S the number of species and H the Shannon diversity index. ...
Preprint
Full-text available
Increase in human population and activities are having signi cant impacts on the conservation of biodiversity. As traditional farmlands have challenges of coupling crop production and conservation of biodiversity, this study aims at assessing traditional farmlands in regard to their typology and impacts on conservation of tree species. A line transect of 26 km was applied for the identi cation of the farmlands and tree species were inventoried within each farm. A cluster analysis was performed; tree species diversity indices and dendrometric parameters were computed and analysed according to each of farmland groups. Five groups of traditional farmlands were found with the small areas with high number of crop species and tree species with dominated cover and the large areas with small number of crop species and tree species with high crown cover and a high number of tree species. The trees species diversity was high within the largest size farmlands. The tree density (p = 0.249), total height of trees (p = 0.585) and tree crown area (p = 0.813) were not signi cantly different among farmland groups. The stem diameter varied signi cantly among farmland groups and the large size farmland groups have high diameter values. The distributions of the diameter of trees for all the farmland groups showed the shapes that were characterized by the tree populations with higher amount of small size stands for all farmland groups. Large farmlands may be promoted to target tree species conservation in agricultural areas in the localities of Ouémé catchment.
... Five randomly selected branches/fruits of each genotype were used for recording the observations. The morphological characterization was done according to the tamarind descriptors, International Union of Plant Protection of New Vegetal Variants (UPOV 1987), International Committee of Genetic Resources of Plant for the description of tropical plants (IPGRI, 1991;Fandohan et al., 2010, Singh et al., 2017. ...
Article
Full-text available
The medicinally important and nutritionally rich tree tamarind is grown widely in India. Many tamarind grooves are existing in Karnataka, which is a wide source of morphological and genetic variations for breeders to crop improvement. Every part of the tree has number of applications in many trades. Owing to its importance in multi-sectors, aim of the present study is to understand the morphological diversity existing among the 96 identified tamarind genotypes collected from all the district of Karnataka at college of Horticulture, Bengaluru (2017-2019). The fifteen qualitative traits were observed and recorded. The identified genotypes revealed the wide variations for fruit and seed related traits. The selection of desirable genotypes based on the morphological variations such as fruit and seed related traits could be effectively used in the tree crop improvement.
... Face à ces menaces climatiques extrêmement grave, plusieurs réactions, non exclusives, sont envisageables en raison de survie et de pérennisation des espèces végétales Parmi les plus probables, les auteurs citent notamment la migration des populations vers des sites plus favorables, leur extinction sur des sites devenus défavorables et leur adaptation génétique [31 -33]. La connaissance des propriétés spécifiques de ces changements susceptibles d'avoir un impact sur les espèces ou leurs habitats constitue un élément central des stratégies d'adaptation [2,34]. Les informations relatives à l'impact potentiel des changements climatiques sur la répartition géographique des habitats favorables à ces espèces s'avèrent importantes pour connaître les zones propices à leur conservation dans le futur, afin de mieux planifier les actions de gestion les concernant [30]. ...
Article
Full-text available
La conservation et la gestion durable des espèces menacées de disparition nécessite la connaissance de leurs aires de distribution potentielles et des facteurs environnementaux qui influencent cette distribution. L'objectif de la présente étude est de cartographier la distribution du tamarinier dans les habitats favorables à sa conservation au Niger. L'approche méthodologique basée sur la collecte des points de présence de l'espèce et les variables bioclimatiques a été utilisée pour modéliser la distribution géographique du tamarinier. Le programmes MAXENT 3.3.3k, DIVA-GIS 7.5 et ArcGIS 10.5 sur le principe de l'entropie maximale a été servi de base. La valeur de l'aire sous la courbe (AUC) est supérieure à 0,90. Ce qui prouve que le modèle de distribution prédit par le programme MaxEnt est d'une excellente qualité. Il prévoit la distribution favorable du tamarinier dans la zone sahélo-soudanienne et soudanienne du Niger. Le test de Jackknife montre que la variable la plus significative, qui contribue beaucoup plus au gain du modèle est la précipitation annuelle(BIO12), avec une valeur de 62,6 %. Trois modèles climatiques ont été utilisés sous le scenario A2 pour la prédiction de l'impact des changements climatiques sur de la distribution de l'espèce à l'horizon 2050 (les modèles CCCMA, HadCM3 et CSIRO). Les projections des trois modèles prévoient que les conditions environnementales futures seront globalement propices à la distribution des habitats très favorables à la conservation de l'espèce. Cependant, l'incertitude liée aux résultats de la modélisation et quelle ne prend pas en compte des facteurs comme la dynamique d'occupation des terres liée à la croissance démographique. Néanmoins, ces résultats pourront aider à la prise de décisions relatives à la conservation des espèces fruitières alimentaires d'importance socioéconomique. Abstract Demography and distribution of wild multipurpose fruit species: A case of Tamarindus indica L. in southwestern areas of Niger The conservation and sustainable management of endangered species requires knowledge of their potential distribution areas and the environmental factors that influence this distribution. The objective of this study 186 Afrique SCIENCE 17(5) (2020) 185-196 Amadou GARBA et al. was to map the distribution of the tamarind tree in habitats favourable to its conservation in Niger.The methodological approach based on collecting the points of presence of the species and the bioclimatic variables were used to model the geographical distribution of the tamarind tree. The MAXENT 3.3.3k, DIVA-GIS 7.5 and ArcGIS 10.5 programs on the principle of maximum entropy were used as a basis. The value of the area under the curve (AUC) is greater than 0.90. This proves that the distribution model predicted by the Maxent program is of excellent quality. It predicts the favorable distribution of the tamarind tree in the Sahelo-Sudanian and Sudanese zone of Niger. The Jackknife test shows that the most significant variable, which contributes much more to the gain of the model is the annual precipitation (BIO12), with a value of 62.6 %. Three climate models were used under scenario A2 to predict the impact of climate change on the distribution of the species by 2050 (the CCCMA, HadCM3 and CSIRO models). The projections of the three models predict that future environmental conditions will be generally favourable to the distribution of habitats very favourable to the conservation of the species. However, the uncertainty associated with the modeling results and which does not take into account factors such as land use dynamics linked to population growth. Nonetheless, these results may help in decision-making relating to the conservation of food fruit species of socioeconomic importance.
Preprint
Full-text available
Picralima nitida is an important African medicinal plant species used in pharmaceutical industries and traditional medicine to treat several diseases. Despite its importance, the species faces conservation problem. This study evaluated the effect of climate and habitat on morphological characteristics and fruit production of P. nitida . A total of 132 fruiting trees was randomly sampled from three habitat types (home gardens, botanical garden and natural forest) and three soils (Nitisols, Arenosols and Acrisols) in Dahomey Gap and Guineo-Congolese zone. A total of 5 morphological traits and fruit production were recorded per tree to describe the relationship between morphological determinism of the species and climate. Pearson correlation was performed to identify the suitable habitat type in each climatic zone. Harmonized World Soil Database was used to determine physicochemical characteristics of the soil types on which the species occurred. Results revealed that the climatic zones (p < 0.001) and habitat types (p < 0.0001) influenced significantly the morphological characteristics and fruit production of P. nitida. High trees with more number of fruits were observed in home gardens on acid soils (Nitisols (pH: 5) and Arenosols (pH: 5.3)) in Dahomey Gap. In Guineo-Congolese zone, the species was more present in natural forest on acid Acrisols (pH: 5).
Article
Full-text available
Strychnos spinosa Lam. is an important wild edible fruit tree (WEFT) that is increasingly threatened due to anthropogenic pressure. Despite its remarkable socio-economic potential, commercial plantations for the species are rare. Characterization of the genetic diversity and potential of WEFT is a prerequisite for domestication and genetic improvement. This study assessed the morphological diversity and differentiation among populations of S. spinosa across a climatic gradient (Sudano-Guinean vs Sudanian zones) in Benin, West Africa. Morphological data were collected on 81 trees and 810 fruits of S. spinosa from 7 populations in the two climatic zones using nine phenotypic descriptors. Descriptive statistics and multivariate analyses were used to describe and partition differences among trees and study populations. Results showed highly significant differences (P ≤ 0.001) among populations for all measured traits. The within-population variation accounted for the highest proportion (53–90%) of the total variation. Strong and positive correlations (r = 0.91–0.99; P < 0.05) were observed among trunk and fruit traits except for tree height and fruits’ seed weight suggesting that fruit traits (fruit mass, pulp mass, seed number, ratio) can be predicted from trunk traits (dbh). Cluster analysis distinguished three distinct groups of S. spinosa in Benin. Population from Bassila phytodistrict in the Sudano-Guinean zone showed superior phenotypic traits (e.g. tree diameter, fruit mass, and pulp mass) indicating a high potential for selection for domestication purposes. Our study revealed marked phenotypic diversity of S. spinosa in Benin and provides relevant information for domestication and harnessing of S. spinosa genetic resources.
Chapter
Full-text available
New initiatives in agroforestry are seeking to integrate into tropical farming systems indigenous trees whose products have traditionally been gathered from natural forests. This is being done in order to provide marketable products from farms that will generate cash for resource-poor rural and peri-urban households. This poverty-alleviating agroforestry strategy is at the same time linked to one in which perennial, biologically diverse and complex mature-stage agroecosystems are developed as sustainable alternatives to slash-and-burn agriculture. One important component of this approach is the domestication of the local tree species that have commercial potential in local, regional or even international markets. Because of the number of potential candidate species for domestication, one crucial first step is the identification of priority species and the formulation of a domestication strategy that is appropriate to the use, marketability and genetic potential of each species. For most of these hitherto wild species little or no formal research has been carried out to assess their food value, potential for genetic improvement or reproductive biology. To date their marketability can only be assessed by their position in the local rural and urban marketplaces, since few have attracted international commercial interest. To meet the objective of poverty alleviation, however, it is crucial that market expansion and creation are possible, hence for example it is important to determine which marketable traits are amenable to genetic improvement. While some traits that are relatively easy to identify do benefit the farmer, there are undoubtedly others that are important to the food, pharmaceutical or other industries that require more sophisticated evaluation. This paper presents the current thinking and strategies of ICRAF in this new area of work and draws on examples from our program.
Article
Full-text available
One of the fundamental basis in the development of sustained-use management systems is the determination of the minimal logging diameters (MLD) and the felling cycle compatible with sustainable logging operations. The method used in the present study to determine the MLD and felling cycle is based on the growth rate and the diameter class distributions of the most important merchantable species in Bassila forest reserve, North Benin. The calculations of the MLD and cutting cycle are done using both the class distribution of the stem diameter and basal area of nine valuable timber species selected within the most important commercial species of this forest reserve, in order to assess the difference between these two approaches.Values of MLD and cutting cycle duration obtained using the stem class distribution or the basal area class distribution are in general the same. The MLD calculated for nine timber species varies from 35 to 65cm. The cutting cycle period obtained is 18 years for the bell-shaped type species and 24 years for the inverse J-shaped type species. For the bell-shaped type species, the mean percentage of recruitment obtained with 18 years felling cycle is about 60% considering the number of the loggable stems and 34% of the loggable basal area. As far as the inverse J-shaped type species are concerned, 24 years felling cycle will allow 55% of mean recruitment considering the number of the loggable stems and 19% of the loggable basal area. For the whole forest stand, 22 years cutting cycle is obtained allowing 57% recruitment of the loggable stems and 23% recruitment of the loggable basal area.
Article
The use of a surrogate taxon in conservation planning has become questionable because recent evidence suggests that the correlation of species richness between pairs of taxa is highly variable both taxonomically and geographically. Species richness is only one measure of species diversity, bowever, and recent studies suggest that investigations of cross-taxon congruence should consider a broader range of assessment techniques. The cross-taxon congruence of community similarity between sites among taxa has rarely been examined and may be the most relevant measure of species diversity in the context of course-filter conservation strategies. We examined cross-taxon congruence patterns of species richness and community similarity (Bray-Curtis similarity) among birds, butterflies, and vascular plants in montane meadow habitats in the Greater Yellowstone Ecosystem. Although patterns of species richness (Spearman rank correlation) varied between taxa, we consistently found a positive correlation in community similarity (Mantel test) between all pair-wise comparisons of the three taxa (e.g., sites with similar bird communities also bad similar butterfly communities). We suggest that the success of a surrogate taxon depends on the technique used to assess surrogacy and the specific approach to conservation planning. In the context of coarse-filter conservation, measures of community similarity may be more appropriate than measures of species richness. Furthermore, the cross-taxon congruency of community similarity in our study suggests that coarse-filter conservation may be tenable in montane meadow communities.
Article
SUMMARY Drum making is an important economic activity in Mpigi district, central Uganda. Scarcity of the desired tree species for drum making has raised concern about the future of the business. A study was carried out to assess the demand and supply of wood for making drums and ascertain whether the supply of logs from the wild is sustainable. Drum makers in 28 stalls were interviewed to collect information on the volume of wood required for making drums. Thirty sample plots were established in Degeya, Lufuka and Mpanga forests to determine the potential supply of logs. A combined Huber and Newton's formulae and Von Mantel's method were used to compute the volume of wood that could be obtained from the forests. The wood used in drum making is in critical supply and the annual demand exceeds supply by 610 m3. Harvesting of the tree species desired for drum making from the forests is not sustainable. On-farm cultivation of the trees by the local communities is recommended in order to supply logs for drum making and reduce pressure on the forests.
Article
Introduction. Detarium microcarpum est une espece fruitiere importante au sud du Mali. L'objectif du present travail a ete la caracterisation morphologique de certaines populations de D. microcarpum, qui serait un prealable necessaire a l'etude de la structure genetique de l'espece. Materiel et methodes. Les observations morphologiques ont concerne vingt-trois caracteres agronomiques etudies sur 25 arbres par peuplement de dix populations reparties sur l'ensemble du sud du Mali. Resultats et discussion. L'etude a montre qu'il existait une variabilite entre les populations, qui a porte sur les caracteres mesures chez le fruit, la graine et la feuille. Trois formes de fruits a maturite et une forme de graines ont ete identifiees. Conclusion. Les resultats obtenus ne permettent pas d'affirmer l'existence de varietes differentes au sein de l'espece D. microcarpum. L'etude devra donc etre elargie a l'observation d'autres caracteres et porter sur l'ensemble de l'aire de repartition de l'espece au Sahel.
Article
A null model for the effects of treefall gaps on tree species diversity of tropical rain forests is based on the well-known relationship between abundance and diversity: habitats supporting larger numbers of individuals can support more populations and more species than habitats supporting small numbers of individuals. Because seedling establishment and sapling density increase following canopy opening, gaps are often also sites of high species diversity. Both tree density and diversity are likely to be greater in areas of high stand-turnover rates. Thinning and non-catastrophic mortality reduce both density and diversity in areas of low gap frequency. Nevertheless, natural and anthropogenic disturbances, such as logging, have been hypothesized to both enhance and limit species diversity through changes in habitat heterogeneity, shifts in competitive balances among species, and creation of otherwise-rare habitats. Species-accumulation curves can be used to evaluate these alternatives by comparing observed species-abundance patterns with expected changes in diversity due to density effects alone. Topographic variation in density and diversity of shrubs and small saplings at the La Selva (Costa Rica) Biological Station preserve was analyzed as an example. The total number of species for each of 18 sites was estimated by fitting a two-parameter hyperbola (similar to the Michaelis-Menten equation) to sample data using a maximum-likelihood method. Although both density and diversity were higher on slopes than on ridges, total species richness was nevertheless higher on slopes than is predictable from density effects alone. High stand-turnover rates on slopes may enhance tree species diversity through increases in tree density and in habitat heterogeneity.