Oxygen Hydration Mechanism for the Oxygen Reduction Reaction at Pt and Pd Fuel Cell Catalysts

Journal of Physical Chemistry Letters (Impact Factor: 7.46). 02/2011; 2(6). DOI: 10.1021/jz101753e


We report the reaction pathways and barriers for the oxygen reduction reaction (ORR) on platinum, both for gas phase and in solution, based on quantum mechanics calculations (PBE-DFT) on semi-infinite slabs. We find a new mechanism in solution: O2 → 2Oad (Eact = 0.00 eV), Oad + H2Oad → 2OHad (Eact = 0.50 eV), OHad + Had → H2Oad (Eact = 0.24 eV), in which OHad is formed by the hydration of surface Oad. For the gas phase (hydrophilic phase of Nafion), we find that the favored step for activation of the O2 is Had + O2ad → HOOad (Eact = 0.30 eV) → HOad + Oad (Eact = 0.12 eV) followed by Oad + H2Oad → 2OHad (Eact = 0.23 eV), OHad + Had → H2Oad (Eact = 0.14 eV). This suggests that to improve the efficiency of ORR catalysts, we should focus on decreasing the barrier for Oad hydration while providing hydrophobic conditions for the OH and H2O formation steps.Keywords: DFT; ORR; platinum cathode; fuel cells; PBE; Poisson−Boltzmann solvation

Download full-text


Available from: William A. Goddard
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism.
    No preview · Article · Dec 2011 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms of the oxygen reduction reaction (ORR) on defective graphene-supported Pt13 nanoparticles have been investigated to understand the effect of defective graphene support on the ORR and predict details of ORR pathways. We employed density functional theory (DFT) predictions using the projector-augmented wave (PAW) method within the generalized gradient approximation (GGA). Free energy diagrams for the ORR over supported and unsupported Pt13 nanoparticles were constructed to provide the stability of possible intermediates in the electrochemical reaction pathways. We demonstrate that the defective graphene support may provide a balance in the binding of ORR intermediates on Pt13 nanoparticles by tuning the relatively high reactivity of free Pt13 nanoparticles that bind the ORR intermediates too strongly subsequently leading to slow kinetics. The defective graphene support lowers not only the activation energy for O2 dissociation from 0.37 to 0.16 eV, but also the energy barrier of the rate-limiting step by reducing the stability of HO* species. We predict the ORR mechanisms via direct four-electron and series two-electron pathways. It has been determined that an activation free energy (0.16 eV) for O2 dissociation from adsorbed O2* at a bridge site on the supported Pt13 nanoparticle into O* + O* species (i.e., the direct pathway) is lower than the free energy barrier (0.29 eV) for the formation of HOO* species from adsorbed O2* at the corresponding atop site, indicating that the direct pathway may be preferred as the initial step of the ORR mechanism. Also, it has been observed that charge is transferred from the Pt13 nanoparticle to both defective graphene and the ORR intermediate species.
    No preview · Article · Jan 2012 · The Journal of Physical Chemistry C
  • [Show abstract] [Hide abstract]
    ABSTRACT: To use density functional theory (DFT) to seek improved catalysts for the oxygen reduction reaction (ORR) in a proton exchange membrane fuel cell, we developed a systematic way to handle the barriers of electron transfer reactions (e.g., H+ + e– + Oad → OHad) within the DFT framework. We report applications of this new method to determining the dependence for the barriers of various ORR reaction steps on the operating electrochemical potential for the Pt-catalyzed fuel cell. This method is used to estimate the optimum operating potential. In the Article, we show how to estimate the change in efficiency from changes in the reaction barriers. On the basis of our mechanism and calculated barriers, the optimum operating voltage for the ORR on Pt is found to be 0.68 V/NHE, which is close to the standard operating voltage of 0.8 V/NHE, validating this analysis.
    No preview · Article · Mar 2012 · The Journal of Physical Chemistry C
Show more